Allen JRL. Physical processes of sedimentation. London: Allen and Unwin; 1970.
Google Scholar
Bauer K, Moeck I, Norden B, Schulze A, Weber M, Wirth H. Tomographic P-wave velocity and vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): relationship to lithology, salt tectonics, and thermal regime. J Geophys Res. 2010. https://doi.org/10.1029/2009JB006895.
Article
Google Scholar
Bauer K, Norden B, Ivanova A, Stiller M, Krawczyk CM. Wavelet transform-based seismic facies classification and modelling: application to a geothermal target horizon in the NE German Basin. Geophys Prospect. 2020. https://doi.org/10.1111/1365-2478.12853.
Article
Google Scholar
Bełka Z, Devleeschouwer X, Narkiewicz M, Piecha M, Reijers TJA, Ribbert KH, Smith NJP. Devonian. In: Doornenbal JC, Stevenson AG, editors. Petroleum geological atlas of the southern Permian Basin area. Houten: EAGE Publications; 2010. p. 71–9.
Google Scholar
Benek R, Hoth P. Permokarbonische Vulkanite. In: Stackebrandt W, Manhenke V, editors. Atlas zur Geologie von Brandenburg. Kleinmachnow: Landesamt für Geowissenschaften und Rohstoffe Brandenburg (LGRB); 2004. p. 80.
Google Scholar
Benek R, Kramer W, McCann T, Scheck M, Negendank J, Korich D, Huebscher HD, Bayer U. Permo-carboniferous magmatism of the Northeast German Basin. Tectonophysics. 1996;266:379–404.
Article
Google Scholar
Beutler G, Franz M. Keuper. In: Stackebrandt W, Franke D, editors. Geologie von Brandenburg. Stuttgart: Schweitzerbart; 2015. p. 194–216.
Google Scholar
Blöcher G, Reinsch T, Henninges J, Milsch H, Regenspurg S, Kummerow J, Francke H, Kranz S, Saadat A, Zimmermann G, Huenges E. Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics. 2016. https://doi.org/10.1016/j.geothermics.2015.07.008.
Article
Google Scholar
Blöcher G, Cacace M, Jacquey AB, Zang A, Heidbach O, Hofmann H, Kluge C, Zimmermann G. Evaluating micro-seismic events triggered by reservoir operations at the geothermal site of Groß Schönebeck (Germany). Rock Mech Rock Eng. 2018. https://doi.org/10.1007/s00603-018-1521-2.
Article
Google Scholar
Bogie I, Mackenzie KM. The application of a volcanic facies model to an andesitic stratovolcano hosted geothermal system at Wayang Windu, Java, Indonesia. In: 20th New Zealand geothermal workshop. 1998. https://pangea.stanford.edu/ERE/db/IGAstandard/record_detail.php?id=1827. Accessed 16 Feb 2022.
Bohnen B. Investigation of the influence of heterogenous reservoir properties on the productivity and sustainability of the geothermal doublet system Groß Schönebeck. TU Berlin: master thesis; 2020.
Breitkreuz C, Geißler M. Permokarbonische Vulkanite. In: Stackebrandt W, Franke D, editors. Geologie von Brandenburg. Stuttgart: Schweitzerbart; 2015. p. 110–6.
Google Scholar
Bridge JS, Mackey SD. A theoretical study of fluvial sandstone body dimensions. Int Assoc Sedimentol Spec Publ. 1993;15:213–36.
Google Scholar
Bridge JS, Tye RS. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores. Am Assoc Pet Geol Bull. 2000;84(8):1205–28.
Google Scholar
Buness H, von Hartmann H, Rumpel H-M, Krawczyk CM, Schulz R. Fault imaging in sparsely sampled 3D seismic data using common-reflection-surface processing and attribute analysis—a study in the Upper Rhine Graben. Geophys Prospect. 2014. https://doi.org/10.1111/1365-2478.12099.
Article
Google Scholar
Coates GR, Peveraro RCA, Hardwick A, Roberts D. The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data. SPE Annu Tech Conf Exhib. 1991. https://doi.org/10.2118/22723-MS.
Article
Google Scholar
DEKORP-BASIN Research Group. The deep crustal structure of the Northeast German basin: new DEKORP-BASIN’96 deep-profiling results. Geology. 1999. https://doi.org/10.1130/0091-7613(1999)027%3c0055:DCSOTN%3e2.3.CO;2.
Article
Google Scholar
Doornenbal H, Stevenson A. Petroleum geological atlas of the southern Permian Basin area. Houten: EAGE Publications BV; 2010.
Google Scholar
Emirov SN, Beybalaev VD, Gadzhiev GG, Ramazanova AE, Amirova AA, Aliverdiev AA. To the description of the temperature and pressure dependences of the thermal conductivity of sandstone and ceramics. J Phys Conf Ser. 2017;891:012335.
Article
Google Scholar
Franke D. Devon. In: Stackebrandt W, Franke D, editors. Geologie von Brandenburg. Stuttgart: Schweitzerbart; 2015a. p. 73–83.
Google Scholar
Franke D. Flyschoides Karbon. In: Stackebrandt W, Franke D, editors. Geologie von Brandenburg. Stuttgart: Schweitzerbart; 2015b. p. 83–95.
Google Scholar
Fuchs S, Förster A. Well-log based prediction of thermal conductivity of sedimentary successions: a case study from the North German Basin. Geophys J Int. 2014. https://doi.org/10.1093/gji/ggt382.
Article
Google Scholar
Fuchs S, Balling N, Förster A. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophys J Int. 2015. https://doi.org/10.1093/gji/ggv403.
Article
Google Scholar
García A, Contreras E, Viggiano JC. Establishment of an empirical correlation for estimating the thermal conductivity of igneous rocks. Int J Thermophys. 1989. https://doi.org/10.1007/BF00503174.
Article
Google Scholar
Gardner GHF, Gardner LW, Gregory AR. Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics. 1974. https://doi.org/10.1190/1.1440465.
Article
Google Scholar
Gast RE. 2.6 Sequenzstratigraphie. In: Plein E, editor. Stratigraphie von Deutschland I—Norddeutsches Rotliegendbecken, Rotliegend-Monographie Teil II. Frankfurt: Courier Forschungsinstitut Senckenberg; 1995. p. 47–54.
Google Scholar
Gast RE, Gebhardt U. 4.4 Elbe-Subgruppe. In: Plein E, editor. Stratigraphie von Deutschland I—Norddeutsches Rotliegendbecken, Rotliegend-Monographie Teil II. Frankfurt: Courier Forschungsinstitut Senckenberg; 1995. p. 121–35.
Google Scholar
Gast RE, Pasternak M, Piske J, Rasch H-J. Das Rotliegend im nordostdeutschen Raum: Regionale Übersicht, Stratigraphie, Fazies und Diagenese. Geol Jahrb Reihe A. 1998;149:59–79.
Google Scholar
Gast RE, Dusar M, Breitkreuz C, Gaupp R, Schneider JW, Stemmerik L, Geluk MC, Geisler M, Kiersnowski H, Glennie KW, Kabel S, Jones NS. Rotliegend. In: Doornenbal JC, Stevenson AG, editors. Petroleum Geological Atlas of the Southern Permian Basin area. Houten: EAGE Publications; 2010. p. 101–21.
Google Scholar
Gebhardt U, Schneider J, Hoffmann N. Modelle zur Stratigraphie und Beckenentwicklung im Rotliegenden der Norddeutschen Senke. Geol Jahrb Reihe a. 1991;127:405–27.
Google Scholar
Geißler M, Breitkreuz C, Kiersnowski H. Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. Int J Earth Sci. 2008;97(5):973–89.
Article
Google Scholar
Gibling MR. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. J Sediment Res. 2006;76(5):731–70.
Article
Google Scholar
Hamann M, Kuhlee, Schulz W, Priebe. Geologisch-technisch-oekonomischer Abschlussbericht der Bohrung E Gross Schönebeck 3/90, Erdoel-Erdgas Grimmen GmbH, Hauptabteilung Geologie, Grimmen, 24.5.1991, 66 pages and 11 enclosures. (in German).
Hardt J, Norden B, Bauer K, Toelle O, Krambach J. Surface cracks—geomorphological indicators for late Quaternary halotectonic movements in northern Germany. Earth Surf Process Landf. 2021. https://doi.org/10.1002/esp.5226.
Article
Google Scholar
Heap MJ, Kushnir ARL, Vasseur J, Wadsworth FB, Harlé P, Baud P, Kennedy BM, Troll VR, Deegan FM. The thermal properties of porous andesite. J Volcanol Geoth Res. 2020. https://doi.org/10.1016/j.jvolgeores.2020.106901.
Article
Google Scholar
Henninges J, Martuganova E, Stiller M, Norden B, Krawczyk CM. Wireline distributed acoustic sensing allows 4.2 km-deep vertical seismic profiling of the Rotliegend 150°C-geothermal reservoir in the North German Basin. 2021. Solid Earth. https://doi.org/10.5194/se-12-521-2021.
Holl HG. Clay minerals and cementation of clastic sediments of the Havel and Elbe Subgroups (Late Rotliegend) derived from cores of the borehole Groß Schönebeck 3/90. In: Huenges E, Hurter S, editors. In-situ Geothermielabor Groß Schönebeck 2000/2001. Scientific Technical Report STR02/14. 2002. https://doi.org/10.23689/fidgeo-522.
Holl HG, Moeck I, Schandelmeier H. Characterization of the tectono-sedimentary evolution of a geothermal reservoir—implications for exploitation (Southern Permian Basin, NE Germany), (Proceedings), World Geothermal Congress (Antalya Turkey). 2005. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0614.pdf. Accessed 16 Feb 2022.
Hoth K, Huebscher H-D. Vulkanite der DDR (Lithologenetische und paläogeomorphologische Charakteristik sowie Rayonierung der Autuneffussiva im Norden der DDR), VEB Geologische Forschung und Erkundung Freiberg, 1986. Map 1:500.000. (in German).
Hoth K, Ruspült J, Zagora K, Beer H, Hartmann O. Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke - Dokumentation für den Zeitabschnitt 1962–1990, vol. 2. Berlin: Schriftenr geol Wiss; 1993. p. 145.
Google Scholar
Huebscher H-D. Zur epigenetischen Metasomatose in den permosilesischen basaltischen Mg-Andesiten von Ost-Brandenburg. Deutschland Terra Nostra. 1995;7:63–6.
Google Scholar
Huenges E. Einleitung. In: Huenges E, Hurter S, editors. In-situ Geothermielabor Groß Schönebeck 2000/2001. Scientific Technical Report STR02/14. 2002. https://doi.org/10.23689/fidgeo-522.
Huenges E, Hurter S, editors. In-situ Geothermielabor Groß Schönebeck 2000/2001. Scientific Technical Report STR02/14. 2002. https://doi.org/10.23689/fidgeo-522.
Huenges E, Winter H. Experimente zur Produktivitätssteigerung in der Geothermie-Forschungsbohrung Groß Schönebeck 3/90, Scientific Technical Report, GeoForschungsZentrum Potsdam, STR 04/16; 2004. p.76–92. https://doi.org/10.48440/gfz.b103-04164. (in German).
Jakubowicz H. Wave equation prediction and removal of interbed multiples. In:68th annual international meeting, SEG, expanded abstracts. 1998. https://doi.org/10.1190/1.1820204.
Juhasz I. Conversion of routine air permeability data into stressed brine-permeability data. In: SPWLA tenth European formation evaluation symposium, Aberdeen, UK. 1986. p. 15.
Kana JD, Djongyang N, Raïdandi D, Nouck PN, Dadjé A. A review of geophysical methods for geothermal exploration. Renew Sust Energy Rev. 2015. https://doi.org/10.1016/j.rser.2014.12.026.
Article
Google Scholar
Klinkenberg LJ. The permeability of porous media to liquids and gases. Drill Prod Pract. 1941;2:200–13.
Google Scholar
Kombrink H, Besly BM, Collinson JD, Den Hartog Jager DG, Drozdzewski G, Dusar M, Hoth P, Pagnier HJM, Stemmerik L, Waksmundzka MI, Wrede V. Carboniferous. In: Doornenbal JC, Stevenson AG, editors. Petroleum geological atlas of the southern Permian Basin area. Houten: EAGE Publications; 2010. p. 81–99.
Google Scholar
König H, Meyer W. Ergebnisbericht Finow 2.1/Liebenwalde 2.1, VEB Kombinat Erdöl-Erdgas Gommern, 15.11.1988, p.35. (in German).
Kopp J, Hoffmann N, Lindert W, Franke D. Präpermischer Untergrund - Tektonostratigraphie und Bruchstörungen. In: Stackebrandt W, Manhenke V, editors. Atlas zur Geologie von Brandenburg. Kleinmachnow: Landesamt für Geowissenschaften und Rohstoffe Brandenburg (LGRB); 2004. p. 80.
Google Scholar
Kossow D, Krawczyk CM. Structure and quantification of factors controlling the evolution of the inverted NE German Basin. Mar Pet Geol. 2002;19(5):601–18.
Article
Google Scholar
Kossow D, Krawczyk CM, McCann T, Strecker M, Negendank JFW. Style and evolution of salt pillows and related structures in the northern part of the Northeast German Basin. Int J Earth Sci. 2000;89(3):652–64.
Article
Google Scholar
Krawczyk CM, Henk A, Tanner DC, Trappe H, Ziesch J, Beilecke T, Aruffo CM, Weber B, Lippmann A, Görke U-J, Bilke L, Kolditz O. Seismic and sub-seismic deformation prediction in the context of geological carbon trapping and storage. Adv Technol Earth Sci. 2015. https://doi.org/10.1007/978-3-319-13930-2_5.
Article
Google Scholar
Krawczyk CM, Stiller M, Bauer K, Norden B, Henninges J, Ivanova A, Huenges E. 3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany. Geotherm Energy. 2019. https://doi.org/10.1186/s40517-019-0131-x.
Article
Google Scholar
Kushnir ARL, Heap MJ, Baud P, Gilg A, Reuschlé T, Lerouge C, Dezayes C, Duringer P. Characterizing the physical properties of rocks from the Paleozoic to Permo-Triassic transition in the Upper Rhine Graben. Geotherm Energy. 2018. https://doi.org/10.1186/s40517-018-0103-6.
Article
Google Scholar
Kwiatek G, Bohnhoff M, Dresen G, Schulze A, Schulte T, Zimmermann G, Huenges E. Microseismicity induced during fluid-injection: a case study from the geothermal site at Groß Schönebeck, North German Basin. Acta Geophys. 2010. https://doi.org/10.2478/s11600-010-0032-7.
Article
Google Scholar
Lange G, Söllig A, Tessin R, Berlin ZGI. Isobathen der Zechsteinbasis 1:500.000. VEB Kartographischer Dienst Potsdam, Zentrales Geologisches Institut, Berlin; 1981.
Le Maitre RW. Igneous rocks: a classification and glossary of terms. Cambridge: Cambridge University Press; 2002. p. 252.
Book
Google Scholar
Leclair SF, Bridge JS. Quantitative interpretation of sedimentary structures formed by river dunes. J Sediment Res. 2001;71(5):713–6.
Article
Google Scholar
Legarth B, Huenges E, Zimmermann G. Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int J Rock Mech Min Sci. 2005. https://doi.org/10.1016/j.ijrmms.2005.05.014.
Article
Google Scholar
Lindert W, Warncke D, Stumm M. Probleme der lithostratigraphischen Korrelation des Oberrotliegenden (Saxon) im Norden der DDR. Z Angew Geol. 1990;36(10):368–75.
Google Scholar
Lokhorst A. NW European gas atlas. Haarlem: Nederlands Inst. voor Toegepaste Geowetenschappen TNO. 1 CD-ROM; 1998.
Lotz B. Neubewertung des rezenten Wärmestroms im Nordostdeutschen Becken. Potsdam: Scientific Technical Report 04/04. 2004. http://d-nb.info/971558531/34. Accessed 16 Feb 2022.
Mann J, Jäger R, Müller T, Höcht G, Hubral P. Common-reflection-surface stack—a real data example. J Appl Geophys. 1999. https://doi.org/10.1016/S0926-9851(99)00042-7.
Article
Google Scholar
Martuganova E, Stiller M, Norden B, Henninges J, Krawczyk CM. 3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes. 2022. Solid Earth. https://doi.org/10.5194/se-2021-138.
McCann T. Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sediment Geol. 1998;116(3–4):177–98.
Article
Google Scholar
McGuire JJ, Lohman RB, Catchings RD, Rymer MJ, Goldman MR. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region. J Geophys Res Solid Earth. 2015. https://doi.org/10.1002/2014JB011579.
Article
Google Scholar
Mendrinos D, Choropanitis I, Polyzou O, Karytsas C. Exploring for geothermal resources in Greece. Geothermics. 2010. https://doi.org/10.1016/j.geothermics.2009.11.002.
Article
Google Scholar
Moeck I, Schandelmeier H, Holl HG. The stress regime in a Rotliegend reservoir of the Northeast German Basin. Int J Earth Sci. 2009. https://doi.org/10.1007/s00531-008-0316-1.
Article
Google Scholar
Norden B, Bauer K, Krawczyk CM. Input and resulting structural and parameterized subsurface data for a geological model of the geothermal research platform Groß Schönebeck (North German Basin). GFZ Data Services. 2022. https://doi.org/10.5880/GFZ.4.8.2022.013.
Peryt TM, Geluk MC, Mathiesen A, Paul J, Smith K. Zechstein. In: Doornenbal JC, Stevenson AG, editors. Petroleum geological atlas of the southern Permian Basin area. Houten: EAGE Publications; 2010. p. 123–47.
Google Scholar
Plein E. Stratigraphie von Deutschland I - Norddeutsches Rotliegendbecken, Rotliegend-Monographie Teil II. Frankfurt: Courier Forschungsinstitut Senckenberg; 1995.
Google Scholar
Pussak M, Bauer K, Stiller M, Bujakowski W. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: application to a geothermal reservoir in the Polish basin. J Appl Geophys. 2014. https://doi.org/10.1016/j.jappgeo.2014.01.020.
Article
Google Scholar
Regenspurg S, Feldbusch E, Norden B, Tichomirowa M. Fluid-rock interactions in a geothermal Rotliegend/Permo-Carboniferous reservoir (North German Basin). Appl Geochem. 2016. https://doi.org/10.1016/j.apgeochem.2016.03.010.
Article
Google Scholar
Reinhardt H-G. Structure of Northeast Germany: regional depth and thickness maps of Permian to Tertiary intervals compiled from seismic reflection data. Spec Publ Eur Assoc Pet Geosci. 1993;3:155–65.
Google Scholar
Ricard LP, Huddlestone-Holmes CR, Pujol M. Reservoir and production engineering challenges for geothermal systems hosted in Australian Sedimentary Basins. Soc Pet Eng. 2016. https://doi.org/10.2118/182343-MS.
Article
Google Scholar
Rider M. The geological interpretation of well logs. Caithness: Whittles Publ; 2000. p. 280.
Google Scholar
Rieke H. Sedimentologie, Faziesarchitektur und Faziesentwicklung des kontinentalen Rotliegenden im Norddeutschen Becken (NEDB). Potsdam: Scientific Technical Report STR 01/14. 2001. https://doi.org/10.48440/GFZ.b103-010029.
Rieke H, Kossow D, McCann T, Krawczyk CM. Tectono-sedimentary evolution of the northernmost margin of the NE German Basin between uppermost Carboniferous and Late Permian (Rotliegend). Geol J. 2001;36(1):19–37.
Article
Google Scholar
Rieke H, McCann T, Krawczyk CM, Negendank JFW. Evaluation of controlling factors on facies distribution and evolution in an arid continental environment: an example from the Rotliegend of the NE German Basin. In: McCann T, Saintot A, editors. Tracing tectonic deformation using the sedimentary record. Geol Soc Spec Publ. 2003;208:71–94.
Rockel W, Hurter S. Tiefe Altbohrungen als Beitrag zur Nutzbarmachung klüftig-poröser Speichergesteine (geologische Grundlagen): Groß Schönbeck. Scientific Technical Report STR00/23. 2000. p. 29–50. https://doi.org/10.48440/gfz.b103-00236. (in German).
Scheck M, Bayer U. Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics. 1999;313(1–2):145–69.
Article
Google Scholar
Scheck M, Bayer U, Lewerenz B. Salt movements in the Northeast German Basin and its relation to major post-Permian tectonic phases—results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics. 2003;361(3–4):277–99.
Article
Google Scholar
Scheck-Wenderoth M, Maystrenko Y, Hübscher C, Hansen M, Mazur S. Dynamics of salt basins. In: Littke R, Bayer U, Gajewski D, Nelskamp S, editors. Dynamics of complex sedimentary basins. The Central European basin system. Berlin: Springer; 2008. p. 307–22.
Google Scholar
Sekiguchi KA. A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics. 1984;103:67–79.
Article
Google Scholar
Siler DL, Faulds JE, Mayhew B, McNamara DD. Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada. USA Geotherm. 2016. https://doi.org/10.1016/j.geothermics.2015.11.002.
Article
Google Scholar
Siratovich PA, Heap MJ, Villenueve MC, Cole JW, Reuschlé T. Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand. Geotherm Energy. 2014. https://doi.org/10.1186/s40517-014-0010-4.
Article
Google Scholar
Somerton WH. Thermal properties and temperature-related behavior of rock/fluid systems. Amsterdam: Elsevier Science Publishers; 1992.
Google Scholar
Stackebrandt W, Manhenke V. Atlas zur Geologie von Brandenburg. Cottbus: Landesamt für Bergbau, Geologie und Rohstoffe; 2010.
Google Scholar
Stackebrandt W, Röhling HG. Trias – Geologischer Rahmen. In: Stackebrandt W, Franke D, editors. Geologie von Brandenburg. Stuttgart: Schweitzerbart; 2015. p. 144–7.
Google Scholar
Strozyk F, Van Gent H, Urai JL, Kukla PA. 3D seismic study of complex intra-salt deformation: an example from the Upper Permian Zechstein 3 stringer, western Dutch offshore. Geol Soc Spec Publ. 2012. https://doi.org/10.1144/SP363.23.
Article
Google Scholar
Strozyk F, Reuning L, Scheck-Wenderoth M, Tanner DC. Chapter 10—The tectonic history of the Zechstein Basin in the Netherlands and Germany. In: Soto JI, Flinch JF, Tari G, editors. Permo-triassic salt provinces of Europe, North Africa and the atlantic margins. Amsterdam: Elsevier; 2017. p. 221–41.
Chapter
Google Scholar
Tischner T, Thorenz C, Jung R, Kessels W. Results from a production test: hydraulics. In: Huenges E, Hurter S, editors. In-situ Geothermielabor Groß Schönebeck 2000/2001. Scientific Technical Report STR02/14. 2002. https://doi.org/10.23689/fidgeo-522.
Trautwein U, Huenges E. Poroelastic behaviour of physical properties in Rotliegend Sandstones under uniaxial strain, Internat. J Rock Mech Min Sci. 2005;42(7–8):924–32.
Article
Google Scholar
Trautwein U. Poroelastische Verformung und petrophysikalische Eigenschaften von Rotliegend Sandsteinen. Berlin: Dissertation TU Berlin. 2005. https://depositonce.tu-berlin.de/bitstream/11303/1537/1/Dokument_47.pdf. Accessed 16 Feb 2022.
van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M. On the origin of the Southern Permian Basin, Central Europe. Mar Pet Geol. 2000;17:43–59.
Article
Google Scholar
von Hartmann H, Beilecke T, Buness H, Musmann P, Schulz R. Seismische exploration für tiefe Geothermie. Geol Jahrb. 2015;B104:1–271.
Google Scholar
Waples DW, Waples JS. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res. 2004. https://doi.org/10.1023/B:NARR.0000032647.41046.e7.
Article
Google Scholar
Wyllie MRJ, Gregory AR, Gardner LW. Elastic wave velocities in heterogeneous and porous media. Geophysics. 1956;21(1):41–70.
Article
Google Scholar
Zhang X, Hu Q. Development of geothermal resources in China: a review. J Earth Sci. 2018. https://doi.org/10.1007/s12583-018-0838-9.
Article
Google Scholar
Zhang Y, Krause M, Mutti M. The formation and structure evolution of Zechstein (Upper Permian) salt in Northeast German basin: a review. Open J Geol. 2013. https://doi.org/10.4236/ojg.2013.38047.
Article
Google Scholar
Ziegler PA. Geological atlas of western and Central Europe. 2nd ed. The Hague: Shell; 1990.
Google Scholar
Zimmermann G, Moeck I, Blöcher G. Cyclic waterfrac stimulation to develop an enhanced geothermal system (EGS)—conceptual design and experimental results. Geothermics. 2010. https://doi.org/10.1016/j.geothermics.2009.10.003.
Article
Google Scholar