Aadnoy BS. Inversion technique to determine the in-situ stress field from fracturing data. J Petr Sci Eng. 1990;4(2):127–41. https://doi.org/10.1016/0920-4105(90)90021-T.
Article
Google Scholar
Abou-Sayed AS, Brechtel CE, Clifton RJ. In situ stress determination by hydrofracturing: a fracture mechanics approach. J Geophys Res. 1978;83(B6):2851–62. https://doi.org/10.1029/JB083iB06p02851.
Article
Google Scholar
Addis MA, Hanssen TH, Yassir N, Willoughby DR, Enever J. A comparison of leak-off test and extended leak-off test data for stress estimation. In: SPE/ISRM Rock Mechanics in Petroleum Engineering, 8-10 July, 1998, Trondheim, Norway 1998. https://doi.org/10.2118/47235-MS. Society of Petroleum Engineers
Altmann JB, Müller B, Müller TM, Heidbach O, Tingay MRP, Weißhardt A. Pore pressure stress coupling in 3d and consequences for reservoir stress states and fault reactivation. Geothermics. 2014;52:195–205. https://doi.org/10.1016/j.geothermics.2014.01.004.
Article
Google Scholar
Altmann JB, Müller TM, Müller BIR, Tingay MRP, Heidbach O. Poroelastic contribution to the reservoir stress path. Int J Rock Mech Mining Sci. 2010;47(7):1104–13. https://doi.org/10.1016/j.ijrmms.2010.08.001.
Article
Google Scholar
Amadei B, Stephansson O. Rock stress and its measurement. Berlin: Springer; 1997.
Book
Google Scholar
Anderson EM. The dynamics of faulting. Trans Edinburgh Geol Soc. 1905;8(3):387–402. https://doi.org/10.1144/transed.8.3.387.
Article
Google Scholar
Ask D. Evaluation of measurement-related uncertainties in the analysis of overcoring rock stress data from äspö HRL, Sweden: a case study. Int J Rock Mech Mining Sci. 2003;40(7):1173–87. https://doi.org/10.1016/S1365-1609(03)00114-X Special Issue of the IJRMMS: Rock Stress Estimation ISRM Suggested Methods and Associated Supporting Papers.
Article
Google Scholar
Ask, D.: Methodology for determination of the complete stress tensor and its variation versus depth based on overcoring rock stress data. In: Rock Mechanics and Engineering Volume 1: Principles, pp. 245–265. CRC Press, Boca Raton, Florida (2017). Chap. 8
Ask MVS, Ask D, Cornet FH, Nilsson T, Talib M, Sundberg J. A hydraulic stress measurement system for investigations at depth in slim boreholes. AGU Fall Meeting Abstr. 2017;2017:14–27.
Google Scholar
Ask MVS, Ask D, Cornet FH, Nilsson T, Talib M, Sundberg J, Lazányi I. The LTU stress trailer: a hydraulic stress measurement system for geothermal exploration. AGU Fall Meeting Abstr. 2018;2018:33–2222.
Google Scholar
Avasthi JM, Goodman HE, Jansson RP. Acquisition, calibration, and use of the in situ stress data for oil and gas well construction and production. In: SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium and Exhibition, 12-15 March, Denver, Colorado 2000. https://doi.org/10.2118/60320-MS. Society of Petroleum Engineers
Baisch S, Weidler R, Vörös R, Wyborn D, de Graaf L. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bull Seismol Soc Am. 2006;96(6):2242–56. https://doi.org/10.1785/0120050255.
Article
Google Scholar
Barton CA, Zoback MD, Burns KL. In-situ stress orientation and magnitude at the Fenton Hill geothermal site, New Mexico, determined from wellbore breakouts. Geophys Res Lett. 1988;15:467–70. https://doi.org/10.1029/GL015i005p00467.
Article
Google Scholar
Barton C, Moos D. Geomechanical Wellbore Imaging: Key to Managing the Asset Life Cycle. In: Dipmeter and Borehole Image Log Technology. American Association of Petroleum Geologists, Tulsa, Oklahoma 2010. https://doi.org/10.1306/13181279M922689
Barton CA, Zoback MD, Moos D. Fluid flow along potentially active faults in crystalline rock. Geology. 1995;23(8):683–6.
Article
Google Scholar
Baumgärtner, J., Rummel, F., Zoback, M.D.: Hydraulic fracturing in situ stress measurements to 3 km depth in the KTB Pilot Hole VB. Technical report, Universität Karlsruhe (1990)
Becker A, Werner D. Strain measurements with the borehole slotter. Terra Nova. 1994;6(6):608–17. https://doi.org/10.1111/j.1365-3121.1994.tb00527.x.
Article
Google Scholar
Bell JS. Petro Geoscience 1 in situ stresses in sedimentary rocks (part 1): measurement techniques. Geosci Canada. 1996;23:2.
Google Scholar
Bell JS. Petro Geoscience 2 in situ stresses in sedimentary rocks (part 2): applications of stress measurements. Geosci Canada. 1996;23:3.
Google Scholar
Bell JS. In-situ stress and coal bed methane potential in Western Canada. Bull Can Petrol Geol. 2006;54(3):197–220. https://doi.org/10.2113/gscpgbull.54.3.197.
Article
Google Scholar
Bell JS, Price PR, McLellan PJ. In-situ stress in the Western Canada Sedimentary Basin. In: Mossop GD, Shetsen I, editors. Geological Atlas of the Western Canada Sedimentary Basin. Calgary: Canadian Society of Petroleum Geologists and Alberta Research Council; 1994.
Google Scholar
Bertilsson, R.: Temperature effects in overcoring stress measurements. Master’s thesis, Luleå University of Technology (2007)
Blanton TL. The relation between recovery deformation and in-situ stress magnitudes. In: SPE/DOE Low Permeability Gas Reservoirs Symposium 1983. https://doi.org/10.2118/11624-MS. Society of Petroleum Engineers
Blöcher G, Cacace M, Jacquey AB, Zang A, Heidbach O, Hofmann H, Kluge C, Zimmermann G. Evaluating micro-seismic events triggered by reservoir operations at the geothermal site of Groß Schönebeck (Germany). Rock Mech Rock Eng. 2018;51(10):3265–79. https://doi.org/10.1007/s00603-018-1521-2.
Article
Google Scholar
Bock H, Foruria V. A recoverable borehole slotting instrument for in situ stress measurements in rocks, not requiring overcoring. In: Lnt. Symp. on Field Measurements in Geomechanics, Zurich, September 5–8, 1983;1983, 15–29
Bock, H.F.: 16 – Measuring in situ rock stress by borehole slotting. In: Hudson, J.A. (ed.) Rock Testing and Site Characterization, pp. 433–443. Pergamon, Oxford (1993). https://doi.org/10.1016/B978-0-08-042066-0.50023-9
Brace WF. The effect of size on mechanical properties of rock. Geophys Res Lett. 1981;8(7):651–2. https://doi.org/10.1029/GL008i007p00651.
Article
Google Scholar
Brady BHG, Brown ET. Rock mechanics. Dordrecht: Kluwer Academic Publishers; 2004.
Google Scholar
Braun R, Jahns E, Stromeyer D. Determination of in-situ stress magnitudes and orientations with RACOS. In: Euroconference on Earth Stress and Industry. The World Stress Map and Beyond. Heidelberg, Germany, September 3–5, 1998 (1998). Heidelberg Academy of Science and Humanities
Breckels IM, Van Eekelen HAM. Relationship between horizontal stress and depth in sedimentary basins. J Petrol Technol. 1982;34(09):2–191. https://doi.org/10.2118/10336-PA.
Article
Google Scholar
Bredehoeft JD, Wolff RG, Keys WS, Shuter E. Hydraulic fracturing to determine the regional in situ stress field, Piceance Basin. Colorado. Geological Society of America Bulletin. 1976;87:250–8 http://dx.doi.org/bwmzr2.
Brown ET, Hoek E. Trends in relationships between measured in-situ stresses and depth. Int J Rock Mech Mining Sci Geomech Abstr. 1978;15(4):211–5. https://doi.org/10.1016/0148-9062(78)91227-5.
Article
Google Scholar
Brudy M. Determination of in-situ stress magnitude and orientation to 9 km depth at the KTB site. PhD thesis, University of Karlsruhe 1995
Brudy M, Zoback MD, Fuchs K, Rummel F, Baumgärtner J. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. J Geophys Res. 1997;102:18453–75. https://doi.org/10.1029/96JB02942.
Article
Google Scholar
Castillo JL. Modified fracture pressure decline analysis including pressure-dependent leakoff. In: Low Permeability Reservoirs Symposium 1987. https://doi.org/10.2118/16417-MS. Society of Petroleum Engineers
Célérier B. Tectonic regime and slip orientation of reactivated faults. Geophys J Int. 1995;121(1):143–61. https://doi.org/10.1111/j.1365-246X.1995.tb03517.x.
Article
Google Scholar
Chan AW, Hauser M, Couzens-Schultz BA, Gray G. The role of shear failure on stress characterization. Rock Mech Rock Eng. 2014;47(5):1641–6. https://doi.org/10.1007/s00603-014-0585-x.
Article
Google Scholar
Clarke H, Eisner L, Styles P, Turner P. Felt seismicity associated with shale gas hydraulic fracturing: the first documented example in Europe. Geophys Res Lett. 2014;41(23):8308–14. https://doi.org/10.1002/2014GL062047.
Article
Google Scholar
Cornet FH, Valette B. In situ stress determination from hydraulic injection test data. J Geophys Res. 1984;89(B13):11527–37. https://doi.org/10.1029/JB089iB13p11527.
Article
Google Scholar
Cornet FH, Berard T, Bourrouis S. How close to failure is a granite rock mass at a 5 km depth? Int J Rock Mech Mining Sci. 2007;44:47–66. https://doi.org/10.1016/j.ijrmms.2006.04.008.
Article
Google Scholar
Cornet FH. Stress determination from hydraulic tests on preexisting fractures – the H.T.P.F. method. In: Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September 1–3, 1986, 1986;301–312. International Society for Rock Mechanics and Rock Engineering
Cornet FH. Elements of crustal geomechanics. Cambridge: Cambridge University Press; 2015.
Book
Google Scholar
Couzens-Schultz BA, Chan AW. Stress determination in active thrust belts: an alternative leak-off pressure interpretation. J Struct Geol. 2010;32(8):1061–9. https://doi.org/10.1016/j.jsg.2010.06.013.
Article
Google Scholar
Deichmann N, Giardini D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol Res Lett. 2009;80(5):784–98. https://doi.org/10.1785/gssrl.80.5.784.
Article
Google Scholar
Denlinger RP, Bufe CG. Reservoir conditions related to induced seismicity at the Geysers steam reservoir, northern California. Bull Seismol Soc Am. 1982;72(4):1317–27.
Google Scholar
Drews MC, Seithel R, Savvatis A, Kohl T, Stollhofen H. A normal-faulting stress regime in the Bavarian Foreland Molasse Basin? New evidence from detailed analysis of leak-off and formation integrity tests in the greater Munich area, SE-Germany. Tectonophysics. 2019;755:1–9. https://doi.org/10.1016/j.tecto.2019.02.011.
Article
Google Scholar
Enever JR, Chopra PN. Experience with hydraulic fracture stress measurements in granite. In: ISRM International Symposium (1986). International Society for Rock Mechanics and Rock Engineering
Enever JR, Yassir N, Willoughby DR, Addis MA. Recent experience with extended leak-off tests for in-situ stress measurements in Australia. APPEA J. 1996;36(1):528–35. https://doi.org/10.1071/AJ95030.
Article
Google Scholar
English JM, Finkbeiner T, English KL, Yahia Cherif R. State of stress in exhumed basins and implications for fluid flow: insights from the Illizi Basin, Algeria. In: Turner JP, Healy D, Hillis RR, Welch MJ, editors. Geomechanics and geology, vol. 458. London: Geological Society of London; 2017. p. 89–112. https://doi.org/10.1144/SP458.6.
Chapter
Google Scholar
Evans KF, Engelder T, Plumb RA. Appalachian stress study: 1. a detailed description of in situ stress variations in devonian shales of the appalachian plateau. J Geophys Res. 1989a;94(B6):7129–54. https://doi.org/10.1029/JB094iB06p07129.
Article
Google Scholar
Evans KF, Oertel G, Engelder T. Appalachian stress study: 2. analysis of devonian shale core: Some implications for the nature of contemporary stress variations and alleghanian deformation in devonian rocks. J Geophys Res. 1989b;94(B6):7155–70. https://doi.org/10.1029/JB094iB06p07155.
Article
Google Scholar
Evans KF, Cornet FH, Hashida T, Hayashi K, Ito T, Matsuki K, Wallroth T. Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal systems: review of developments during the past 15 years. Geothermics. 1999;28(4):455–74. https://doi.org/10.1016/S0375-6505(99)00023-1.
Article
Google Scholar
Fairhurst C. Measurement of in-situ rock stresses with particular reference to hydraulic fracturing. Rock Mech. Eng. Geol. 1964;2
Fellgett MW, Kingdon A, Williams JDO, Gent CMA. Stress magnitudes across UK regions: New analysis and legacy data across potentially prospective unconventional resource areas. Marine Petrol Geol. 2018;97:24–31. https://doi.org/10.1016/j.marpetgeo.2018.06.016.
Article
Google Scholar
Figueiredo B, Cornet FH, Lamas L, Muralha J. Determination of the stress field in a mountainous granite rock mass. Int J Rock Mech Mining Sci. 2014;72:37–48. https://doi.org/10.1016/j.ijrmms.2014.07.017.
Article
Google Scholar
Finkbeiner T, Barton CA, Zoback MD. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California. AAPG Bull. 1997;81(12):1975–99.
Google Scholar
Fischer K, Henk A. A workflow for building and calibrating 3-D geomechanical models - a case study for a gas reservoir in the North German Basin. Solid Earth. 2013;4(2):347–55. https://doi.org/10.5194/se-4-347-2013.
Article
Google Scholar
Fleckenstein P, Reuschke G, Müller B, Connolly P. Predicting stress re-orientations associated with major geological structures in sedimentary sequences. DGMK research report 593-5, Geophysical Institute University of Karlsruhe 2004. unpublished
Fuchs K, Müller B. World Stress Map of the Earth: a key to tectonic processes and technological applications. Naturwissenschaften. 2001;88(9):357–71. https://doi.org/10.1007/s001140100253.
Article
Google Scholar
Funato A, Ito T. A new method of diametrical core deformation analysis for in-situ stress measurements. Int J Rock Mech Mining Sci. 2017;91:112–8. https://doi.org/10.1016/j.ijrmms.2016.11.002.
Article
Google Scholar
Gaucher E, Schoenball M, Heidbach O, Zang A, Fokker PA, van Wees J-D, Kohl T. Induced seismicity in geothermal reservoirs: a review of forecasting approaches. Renew Sustain Energy Rev. 2015;52:1473–90. https://doi.org/10.1016/j.rser.2015.08.026.
Article
Google Scholar
Grigoli F, Cesca S, Rinaldi AP, Manconi A, López-Comino JA, Clinton JF, Westaway R, Cauzzi C, Dahm T, Wiemer S. The november 2017 mw 5.5 pohang earthquake: a possible case of induced seismicity in south korea. Science. 2018;360(6392):1003–6. https://doi.org/10.1126/science.aat2010.
Article
Google Scholar
Grünthal G. Induced seismicity related to geothermal projects versus natural tectonic earthquakes and other types of induced seismic events in Central Europe. Geothermics. 2014;52:22–35. https://doi.org/10.1016/j.geothermics.2013.09.009 Analysis of Induced Seismicity in Geothermal Operations.
Article
Google Scholar
Gunzburger Y, Cornet FH. Rheological characterization of a sedimentary formation from a stress profile inversion. Geophys J Int. 2007;168(1):402–18. https://doi.org/10.1111/j.1365-246X.2006.03140.x.
Article
Google Scholar
Gunzburger Y, Magnenet V. Stress inversion and basement-cover stress transmission across weak layers in the Paris basin, France. Tectonophysics. 2014;617:44–57. https://doi.org/10.1016/j.tecto.2014.01.016.
Article
Google Scholar
Guo F, Morgenstern NR, Scott JD. Interpretation of hydraulic fracturing breakdown pressure. Int J Rock Mech Mining Sci Geomech Abstr. 1993a;30(6):617–26. https://doi.org/10.1016/0148-9062(93)91221-4.
Article
Google Scholar
Guo F, Morgenstern NR, Scott JD. Interpretation of hydraulic fracturing pressure: a comparison of eight methods used to identify shut-in pressure. Int J Rock Mech Mining Sci Geomech Abstr. 1993b;30(6):627–31. https://doi.org/10.1016/0148-9062(93)91222-5.
Article
Google Scholar
Haimson BC. Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth. PhD thesis, University of Minnesota 1968
Haimson BC, Cornet FH. Isrm suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Mining Sci. 2003;40(7–8):1011–20. https://doi.org/10.1016/j.ijrmms.2003.08.002.
Article
Google Scholar
Haimson BC, Fairhurst C. Initiation and extension of hydraulic fractures in rocks. Soc Petrol Eng J. 1967;7(03):310–8. https://doi.org/10.2118/1710-PA.
Article
Google Scholar
Haimson BC, Fairhurst C. Hydraulic fracturing in porous-permeable materials. J Petrol Technol. 1969;21(07):811–7.
Article
Google Scholar
Hakala M, Hudson JA, Christiansson R. Quality control of overcoring stress measurement data. Int J Rock Mech Mining Sci. 2003;40(7):1141–59. https://doi.org/10.1016/j.ijrmms.2003.07.005 Special Issue of the IJRMMS: Rock Stress Estimation ISRM Suggested Methods and Associated Supporting Papers.
Article
Google Scholar
Hakala M. Quality control for overcoring stress measurement data - POSIVA 2006–03. Gridpoint Finland Oy: Technical report; 2007.
Hakimhashemi AH, Yoon JS, Heidbach O, Zang A, Grünthal G. Forward induced seismic hazard assessment: application to a synthetic seismicity catalogue from hydraulic stimulation modelling. J Seismol. 2014a;18(3):671–80. https://doi.org/10.1007/s10950-014-9439-y.
Article
Google Scholar
Hakimhashemi AH, Schoenball M, Heidbach O, Zang A, Grünthal G. Forward modelling of seismicity rate changes in georeservoirs with a hybrid geomechanical-statistical prototype model. Geothermics. 2014b;52:185–94. https://doi.org/10.1016/j.geothermics.2014.01.001.
Article
Google Scholar
Hast N. The measurements of rock stress in mines. Sveriges geologiska undersökning Series C Arsbok, Publication 52-3, Stockholm 1958
Hast N. The state of stresses in the upper part of the earth’s crust. Eng Geol. 1967;2(1):5–17. https://doi.org/10.1016/0013-7952(67)90002-6.
Article
Google Scholar
Hast N. The state of stress in the upper part of the earth’s crust. Tectonophysics. 1969;8(3):169–211. https://doi.org/10.1016/0040-1951(69)90097-3.
Article
Google Scholar
Hast N. Global measurements of absolute stress. Philosophical Transactions of the Royal Society of London. Math Phys Sci. 1973;274(1239):409–19.
Google Scholar
Haug K, Bell JS. Compilation of in situ stress data from Alberta and Northeastern British Columbia (tabular data, tab delimited). Alberta Energy Regulator, AER/AGS Digital Data 2016-0040 (2016). https://ags.aer.ca/publications/DIG-2016-0040.html
Heidbach O, Reinecker J, Tingay MRP, Müller B, Sperner B, Fuchs K, Wenzel F. Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database. Tectonics 2007;26(TC6014). https://doi.org/10.1029/2007TC002133
Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics. 2010;482(1):3–15. https://doi.org/10.1016/j.tecto.2009.07.023 Frontiers in Stress Research.
Heidbach O, Rajabi M, Cui X, Fuchs K, Müller B, Reinecker J, Reiter K, Tingay MRP, Wenzel F, Xie F. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics. 2018;744:484–98. https://doi.org/10.1016/j.tecto.2018.07.007.
Article
Google Scholar
Henk A. Perspectives of geomechanical reservoir models - why stress is important. Oil Gas. 2009;35(1):20–4.
Google Scholar
Hergert T, Heidbach O, Reiter K, Giger SB, Marschall P. Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth. 2015;6(2):533. https://doi.org/10.5194/se-6-533-2015.
Article
Google Scholar
Herget G. Ground stress determinations in Canada. Rock Mech. 1974;6(1):53–64. https://doi.org/10.1007/BF01238053.
Article
Google Scholar
Hickman SH, Zoback MD. The interpretation of hydraulic fracturing pressure-time data for in-situ stress determination. Hydraulic fracturing measurements. Proceedings of a Workshop, December 1–5, 1983;1981, 44–54. National Academy Press Washington, DC
Hicks SP, Verdon J, Baptie B, Luckett R, Mildon ZK, Gernon T. A shallow earthquake swarm close to hydrocarbon activities: Discriminating between natural and induced causes for the 2018–2019 Surrey, United Kingdom, earthquake sequence. Seismological Research Letters. 2019;. https://doi.org/10.1785/0220190125.
Hillis RR, Williams AF. The stress field of the North West Shelf and wellbore stability. APEA J. 1993;33(1):373–85.
Google Scholar
Hubbert MK, Willis DG. Mechanics of hydraulic fracturing. Trans Soc Petrol Eng AIME. 1957;210:153–63.
Article
Google Scholar
Hudson JA, Cornet FH, Christiansson R. Isrm suggested methods for rock stress estimation-part 1: Strategy for rock stress estimation. Int J Rock Mech Mining Sci. 2003;40(7):991–8. https://doi.org/10.1016/j.ijrmms.2003.07.011.
Article
Google Scholar
Irvin RA, Garritty P, Farmer IW. The effect of boundary yield on the results of in situ stress measurements using overcoring techniques. Int J Rock Mech Mining Sci Geomech Abstr. 1987;24(1):89–93. https://doi.org/10.1016/0148-9062(87)91237-X Special Issue In Situ Rock Stress.
Article
Google Scholar
Ito T, Evans K, Kawai K, Hayashi K. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress. Int J Rock Mech Mining Sci. 1999;36(6):811–26. https://doi.org/10.1016/S0148-9062(99)00053-4.
Article
Google Scholar
Jaeger JC, Cook NGW, Zimmerman R. Fundamentals of Rock Mechanics. 4th ed. New York: Wiley; 2009.
Google Scholar
Kehle RO. The determination of tectonic stresses through analysis of hydraulic well fracturing. J Geophys Res. 1964;69(2):259–73. https://doi.org/10.1029/JZ069i002p00259.
Article
Google Scholar
King GCP, Stein RS, Lin J. Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am. 1994;84(3):935–53.
Google Scholar
Klee G, Rummel,F. Hydrofrac stress data for the European HDR research project test site Soultz-Sous-Forêts. Int J Rock Mech Min Sci Geomech Abstr. 1993;30(7):973–6.
Article
Google Scholar
Kunze KR, Steiger RP. Extended leakoff tests to measure in situ stress during drilling. In: The 32nd US Symposium on Rock Mechanics (USRMS) 1991. American Rock Mechanics Association
Kwiatek G, Martínez-Garzón P, Plenkers K, Leonhardt M, Zang A, von Specht S, Dresen G, Bohnhoff M. Insights into complex Subdecimeter Fracturing Processes Occurring During a Water Injection Experiment at Depth in Äspö Hard Rock Laboratory, Sweden. J Geophys Res. 2018;123(8):6616–35. https://doi.org/10.1029/2017JB014715.
Article
Google Scholar
Lecampion B, Bunger A, Zhang X. Numerical methods for hydraulic fracture propagation: a review of recent trends. J Nat Gas Sci Eng. 2018;49:66–83. https://doi.org/10.1016/j.jngse.2017.10.012.
Article
Google Scholar
Lee D, Bratton T, Birchwood R. Leak-off test interpretation and modeling with application to geomechanics. In: Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS) 2004. American Rock Mechanics Association
Lee M, Haimson B. Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism. Int J Rock Mech Mining Sci Geomech Abstr. 1993;30(7):1039–45. https://doi.org/10.1016/0148-9062(93)90069-P.
Article
Google Scholar
Leeman ER. The measurement of stress in rock - parts i, ii and iii. J South Afr Inst Min Metall. 1964;65:45–114254284.
Google Scholar
Leeman ER. The determination of the complete state of stress in rock in a single borehole - Laboratory and underground measurements. Int J Rock Mech Mining Sci Geomech Abstr. 1968;5(1):31–8. https://doi.org/10.1016/0148-9062(68)90021-1.
Article
Google Scholar
Leijon BA. Relevance of pointwise rock stress measurements-an analysis of overcoring data. Int J Rock Mech Mining Sci Geomech Abstr. 1989;26(1):61–8. https://doi.org/10.1016/0148-9062(89)90526-3.
Article
Google Scholar
Li G, Lorwongngam A, Roegiers J-C. Critical review of leak-off test as a practice for determination of in-situ stresses. In: 43rd US Rock Mechanics Symposium & 4th US-Canada Rock Mechanics Symposium (2009). American Rock Mechanics Association
Liu L, Li L, Elsworth D, Zhi S, Yu Y. The impact of oriented perforations on fracture propagation and complexity in hydraulic fracturing. Processes 2018;6(11). https://doi.org/10.3390/pr6110213
Ljunggren C, Chang Y, Janson T, Christiansson R. An overview of rock stress measurement methods. Int J Rock Mech Mining Sci. 2003;40(7):975–89. https://doi.org/10.1016/j.ijrmms.2003.07.003 Special Issue of the IJRMMS: Rock Stress Estimation ISRM Suggested Methods and Associated Supporting Papers.
Article
Google Scholar
Majer EL, Peterson JE. The impact of injection on seismicity at The Geysers, California Geothermal Field. Int J Rock Mech Mining Sci. 2007;44(8):1079–90. https://doi.org/10.1016/j.ijrmms.2007.07.023.
Article
Google Scholar
McGarr A, Gay NC. State of stress in the Earth’s crust. Ann Rev Earth Planet Sci. 1978;6(1):405–36. https://doi.org/10.1146/annurev.ea.06.050178.002201.
Article
Google Scholar
Megies T, Wassermann J. Microseismicity observed at a non-pressure-stimulated geothermal power plant. Geothermics. 2014;52:36–49. https://doi.org/10.1016/j.geothermics.2014.01.002.
Article
Google Scholar
Meixner J, Schill E, Gaucher E, Kohl T. Inferring the in situ stress regime in deep sediments: an example from the Bruchsal geothermal site. Geotherm Energy. 2014;2:7. https://doi.org/10.1186/s40517-014-0007-z.
Article
Google Scholar
Moos D, Zoback MD. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes. J Geophys Res. 1990;95(B6):9305–25. https://doi.org/10.1029/JB095iB06p09305.
Article
Google Scholar
Moos D, Peška P, Finkbeiner T, Zoback MD. Comprehensive wellbore stability analysis utilizing quantitative risk assessment. J Petrol Sci Eng. 2003;38(3):97–109. https://doi.org/10.1016/S0920-4105(03)00024-X Borehole Stability.
Article
Google Scholar
Morawietz S, Reiter K. Stress Magnitude Database Germany. Published via GFZ Data Services. 2020;. https://doi.org/10.5880/wsm.2020.004.
Morris A, Ferrill DA, Henderson DB. Slip-tendency analysis and fault reactivation. Geology. 1996;24(3):275–8.
Article
Google Scholar
Mossop A, Segall P. Subsidence at The Geysers Geothermal Field, N. California from a comparison of GPS and leveling surveys. Geophys Res Lett. 1997;24(14):1839–42. https://doi.org/10.1029/97GL51792.
Article
Google Scholar
Müller B, Schilling F, Röckel T, Heidbach O. Induced seismicity in reservoirs: stress makes the difference. Erdöl Erdgas Kohle. 2018;134:33–7. https://doi.org/10.19225/180106.
Article
Google Scholar
Nelson E, Hillis R, Mildren S. Stress partitioning and wellbore failure in the West Tuna Area, Gippsland Basin. Explor Geophys. 2006;37(3):215–21. https://doi.org/10.1071/EG06215.
Article
Google Scholar
NOS: Nederlandse Omroep Stichting: Gaswinning groningen stopt al in 2022. https://nos.nl/artikel/2301110-gaswinning-groningen-stopt-al-in-2022.html (2019). Accessed 28 Oct 2019.
Peška P, Zoback MD. Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. J Geophys Res. 1995a;100(B7):12791–811. https://doi.org/10.1029/95JB00319.
Article
Google Scholar
Peška P, Zoback MD. Observations of borehole breakouts and tensile wall-fractures in deviated boreholes: A technique to constrain in situ stress and rock strength. In: The 35th US Symposium on Rock Mechanics (USRMS) 1995b. American Rock Mechanics Association
Pierdominici S, Heidbach O. Stress field of Italy - Mean stress orientation at different depths and wave-length of the stress pattern. Tectonophysics. 2012;532–535:301–11. https://doi.org/10.1016/j.tecto.2012.02.018.
Article
Google Scholar
Pratt HR, Black AD, Brown WS, Brace WF. The effect of speciment size on the mechanical properties of unjointed diorite. Int J Rock Mech Mining Sci Geomech Abstr. 1972;9(4):513–6. https://doi.org/10.1016/0148-9062(72)90042-3.
Article
Google Scholar
Raaen AM, Horsrud P, Kjørholt H, Økland D. Improved routine estimation of the minimum horizontal stress component from extended leak-off tests. Int J Rock Mech Mining Sci Geomech AbstrInt J Rock Mech Mining Sci Geomech Abstr. 2006;43(1):37–48. https://doi.org/10.1016/j.ijrmms.2005.04.005.
Article
Google Scholar
Rajabi M, Tingay MRP, Heidbach O, Hillis R, Reynolds S. The present-day stress field of Australia. Earth-Sci Rev. 2017a;168:165–89. https://doi.org/10.1016/j.earscirev.2017.04.003.
Article
Google Scholar
Rajabi M, Tingay MRP, King R, Heidbach O. Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations. Basin Res. 2017b;29(S1):622–40. https://doi.org/10.1111/bre.12175.
Article
Google Scholar
Ranalli G, Chandler TE. The stress field in the upper crust as determined from in situ measurements. Geologische Rundschau. 1975;64(1):653–74. https://doi.org/10.1007/BF01820688.
Article
Google Scholar
Ratigan JL. The use of the fracture reopening pressure in hydraulic fracturing stress measurements. Rock Mech Rock Eng. 1992;25(4):225–36. https://doi.org/10.1007/BF01041805.
Article
Google Scholar
Reiter K, Heidbach O. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth. 2014;5(2):1123–49. https://doi.org/10.5194/se-5-1123-2014.
Article
Google Scholar
Reiter K, Heidbach O, Müller B, Reinecker J, Röckel T. Stress Map Germany 2016. Published via GFZ Data Serv. 2016;. https://doi.org/10.5880/WSM.Germany2016_en.
Article
Google Scholar
Ren NK, Hudson PJ. Predicting the in-situ state of stress using differential wave velocity analysis. In: Proceedings of the 26th US Symposium on Rock Mechanics 1985;123. International Association for Engineering Geology
Röckel T, Natau O. Estimation of the maximum horizontal stress magnitude from drilling induced fractures and centerline fractures at the KTB drill site. KTB Report. 1993;93(2):183–6.
Google Scholar
Roth F, Fleckenstein P. Stress orientations found in north-east Germany differ from the West European trend. Terra Nova. 2001;13(4):289–96. https://doi.org/10.1046/j.1365-3121.2001.00357.x.
Article
Google Scholar
Rummel F. Fracture mechanics approach to hydraulic fracturing stress measurements. In: Atkinson BK, editor. Fract Mech Rock. Elsevier, London: Academic Press; 1987. p. 217–40. https://doi.org/10.1016/B978-0-12-066266-1.50011-9 Chap. 6.
Chapter
Google Scholar
Rummel F, Baumgärtner J. Spannungsmessungen im östlichen bereich der südwestdeutschen scholle. Report RUB-7084408-82-3, Ruhr University Bochum to the Federal Bureau of Geoscience and Resources, Hannover (1982)
Rummel F, Baumgärtner J. Hydraulic fracturing stress measurements in the GPK1 borehole, Soultz-Sous-Forêts. In: Bresee J, editor. Geothermal Energy in Europe, The Soultz Hot Dry Rock Project. London: Gordon & Breach Science Publishers; 1992. p. 119.
Google Scholar
Rummel F, Baumgärtner J, Alheid HJ. Hydraulic Fracturing Stress Measurements Along the Eastern Boundary of the SW-German Block. In: Hydraulic Fracturing Stress Measurements. Proceedings of a Workshop, Monterey, California, December 2–5, 1981, pp. 3–17. National Academy Press, Washington D. C. (1983)
Rutqvist J, Tsang C-F, Stephansson O. Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture. Int J Rock Mech Mining Sci. 2000;37(1–2):107–20. https://doi.org/10.1016/S1365-1609(99)00097-0.
Article
Google Scholar
Savage WZ, Swolfs HS, Powers PS. Gravitational stresses in long symmetric ridges and valleys. Int J Rock Mech Mining Sci Geomech Abstr. 1985;22(5):291–302. https://doi.org/10.1016/0148-9062(85)92061-3.
Article
Google Scholar
Scheidegger AE. Stresses in the Earth’s crust as determined from hydraulic fracturing data. Geologie und Bauwesen. 1962;27:45–53.
Google Scholar
Schmitt DR, Currie CA, Zhang L. Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics. 2012;580:1–26. https://doi.org/10.1016/j.tecto.2012.08.029.
Article
Google Scholar
Schmitt DR, Haimson BC. Hydraulic fracturing stress measurements in deep holes. In: Feng X-T, editor. Rock Mechanics and Engineering Volume 1: Principles. Boca Raton: CRC Press; 2017. p. 183–225 Chap. 6.
Google Scholar
Schmitt DR, Zoback MD. Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests - A proposed breakdown equation employing a modified effective stress relation for tensile failure. Int J Rock Mech Mining Sci Geomech Abstr. 1989;26(6):499–506. https://doi.org/10.1016/0148-9062(89)91427-7.
Article
Google Scholar
Schoenball M, Müller TM, Müller BIR, Heidbach O. Fluid-induced microseismicity in pre-stressed rock masses. Geophys J Int. 2010;180(2):813–9. https://doi.org/10.1111/j.1365-246X.2009.04443.x.
Article
Google Scholar
Schoenball M, Davatzes NC. Quantifying the heterogeneity of the tectonic stress field using borehole data. J Geophys Res. 2017;122(8):6737–56. https://doi.org/10.1002/2017JB014370.
Article
Google Scholar
Schoenball M, Walsh R, Weingarten M, Ellsworth W. How faults wake up: The Guthrie-Langston, Oklahoma earthquakes. Leading Edge. 2018;37:810–6. https://doi.org/10.1190/tle37020100.1.
Article
Google Scholar
Segall P, Fitzgerald SD. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics. 1998;289(1–3):117–28. https://doi.org/10.1016/S0040-1951(97)00311-9.
Article
Google Scholar
Segall P, Grasso J-R, Mossop A. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. J Geophys Res. 1994;99(B8):15423–38. https://doi.org/10.1029/94JB00989.
Article
Google Scholar
Seidle J. Fundamentals of Coalbed Methane Reservoir Engineering. Tulsa: PennWell Books; 2011.
Google Scholar
Seithel R. Geomechanical characterization of geothermal reservoirs in the Bavarian Molasse Basin. Doctoral thesis, Karlsruhe Institute of Technology (2019)
Seithel R, Gaucher E, Mueller B, Steiner U, Kohl T. Probability of fault reactivation in the Bavarian Molasse Basin. Geothermics. 2019;82:81–90. https://doi.org/10.1016/j.geothermics.2019.06.004.
Article
Google Scholar
Shen B. Borehole breakouts and in situ stresses. South Hemisph Int Rock Mech Symp. 2008;1:407–18.
Article
Google Scholar
Shen LW, Schmitt DR, Schultz R. Frictional stabilities on induced earthquake Fault Planes at Fox Creek, Alberta: A pore fluid pressure dilemma. Geophys Res Lett. 2019a;46(15):8753–62. https://doi.org/10.1029/2019GL083566.
Article
Google Scholar
Shen LW, Schmitt DR, Haug K. Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions: Fox Creek, Alberta. Tectonophysics. 2019b;764:110–23. https://doi.org/10.1016/j.tecto.2019.04.023.
Article
Google Scholar
Sibson RH. Frictional constraints on thrust, wrench and normal faults. Nature. 1974;249:542–4. https://doi.org/10.1038/249542a0.
Article
Google Scholar
Sibson RH. Structural permeability of fluid-driven fault-fracture meshes. J Struct Geol. 1996;18(8):1031–42. https://doi.org/10.1016/0191-8141(96)00032-6.
Article
Google Scholar
Sjöberg J, Klasson H. Stress measurements in deep boreholes using the Borre (SSPB) probe. Int J Rock Mech Mining Sci. 2003;40(7):1205–23. https://doi.org/10.1016/S1365-1609(03)00115-1 Special Issue of the IJRMMS: Rock Stress Estimation ISRM Suggested Methods and Associated Supporting Papers.
Article
Google Scholar
Sjöberg J, Christiansson R, Hudson JA. Isrm suggested methods for rock stress estimation-part 2: overcoring methods. Int J Rock Mech Mining Sci. 2003;40(7):999–1010. https://doi.org/10.1016/j.ijrmms.2003.07.012 Special Issue of the IJRMMS: Rock Stress Estimation ISRM Suggested Methods and Associated Supporting Papers.
Article
Google Scholar
Sperner B, Müller B, Heidbach O, Delvaux D, Reinecker J, Fuchs K. Tectonic stress in the Earth’s crust: Advances in the World Stress Map project. Geol Soc. 2003;212(1):101–16. https://doi.org/10.1144/GSL.SP.2003.212.01.07.
Article
Google Scholar
Stacey TR, Wesseloo J. Evaluation and upgrading of records of stress measurement data in the mining industry. Final Project Report GAP 511b, SRK Consulting (1998a)
Stacey TR, Wesseloo J. In situ stresses in mining areas in South Africa. J South Afr Inst Mining Metal. 1998b;11(12):365–8.
Google Scholar
Stephansson O. Stress Measurements and Modelling of Crustal Rock Mechanics in Fennoscandia. In: Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, 1989;213–229. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2311-9_13
Strickland FG, Ren N-K. Use of differential strain curve analysis in predicting in-situ stress state for deep wells. In: The 21st U.S. Symposium on Rock Mechanics (USRMS), Rolla, Missouri, May 27-30, 1980, 1980;523–532. https://doi.org/10.2118/8954-MS. American Rock Mechanics Association
Terzaghi K. The shearing resistance of saturated soils and the angle between the planes of shear. In: Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Held June 22–26, 1936, at Harvard University, Cambridge, Mass., 1936;1, 4–59
Teufel LW, Warpinski NR. Determination Of In Situ Stress From An Elastic Strain Recovery Measurements Of Oriented Core: Comparison To Hydraulic Fracture Stress Measurements In The Rollins Sandstone, Piceance Basin, Colorado. In: The 25th U.S. Symposium on Rock Mechanics (USRMS), Evanston, Illinois, June 25-27, 1984 (1984). American Rock Mechanics Association
Teufel LW. Determination of in-situ stress from anelastic strain recovery measurements of oriented core. In: SPE/DOE Low Permeability Gas Reservoirs Symposium 1983. https://doi.org/10.2118/11649-MS. Society of Petroleum Engineers
Tingay MRP, Hillis RR, Morley CK, Swarbrick RE, Okpere EC. Variation in vertical stress in the Baram Basin, Brunei: tectonic and geomechanical implications. Marine Petrol Geol. 2003;20(10):1201–12. https://doi.org/10.1016/j.marpetgeo.2003.10.003.
Article
Google Scholar
Tingay MRP, Hillis RR, Morley CK, Swarbrick RE, Drake SJ. Present-day stress orientation in Brunei: a snapshot of ’prograding tectonics’ in a Tertiary delta. J Geol Soc. 2005a;162(1):39–49. https://doi.org/10.1144/0016-764904-017.
Article
Google Scholar
Tingay MRP, Müller B, Reinecker J, Heidbach O, Wenzel F, Fleckenstein P. Understanding tectonic stress in the oil patch : the World Stress Map Project. Lead Edge. 2005b;24(12):1276–82. https://doi.org/10.1190/1.2149653.
Article
Google Scholar
Tingay MRP, Müller B, Reinecker J, Heidbach O. State and origin of the present-day stress field in sedimentary basins: New results from the World Stress Map Project. In: Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS) 2006. American Rock Mechanics Association
Tingay MRP, Hillis RR, Morley CK, King RC, Swarbrick RE, Damit AR. Present-day stress and neotectonics of Brunei: Implications for petroleum exploration and production. AAPG Bull. 2009;93(1):75–100. https://doi.org/10.1306/08080808031.
Article
Google Scholar
Trautwein-Bruns U, Schulze KC, Becker S, Kukla PA, Urai JL. In situ stress variations at the Variscan deformation front - Results from the deep Aachen geothermal well. Tectonophysics. 2010;493:196–211. https://doi.org/10.1016/j.tecto.2010.08.003.
Article
Google Scholar
Valley B, Evans KF. Stress state at Soultz-Sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. In: 32nd Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24, 2007 (2007)
Valley B, Evans KF. Stress magnitudes in the Basel enhanced geothermal system. Int J Rock Mech Mining Sci. 2019;118:1–20. https://doi.org/10.1016/j.ijrmms.2019.03.008.
Article
Google Scholar
van Wees J-D, Osinga S, Van Thienen-Visser K, Fokker PA. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field. Geophys J Int. 2017;212(3):1487–97. https://doi.org/10.1093/gji/ggx452.
Article
Google Scholar
Vernik L, Zoback MD. Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the cajon pass scientific research borehole. J Geophys Res. 1992;97(B4):5109–19. https://doi.org/10.1029/91JB01673.
Article
Google Scholar
Walsh R, Zoback MD. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: Application to north-central Oklahoma, USA. Geology. 2016;44:38275. https://doi.org/10.1130/G38275.1.
Article
Google Scholar
Wang H, Sharma MM. New variable compliance method for estimating in-situ stress and leak-off from DFIT data. In: SPE Annual Technical Conference and Exhibition, 9-11 October, San Antonio, Texas, USA (2017). https://doi.org/10.2118/187348-MS. Society of Petroleum Engineers
Warpinski NR. Determining the minimum in situ stress from hydraulic fracturing through perforations. Int J Rock Mech Mining Sci Geomech Abstr. 1989;26(6):523–31. https://doi.org/10.1016/0148-9062(89)91430-7.
Article
Google Scholar
Warpinski NR. 34 – Case study of hydraulic fracture experiments at the multiwell experiment site, Piceance Basin, Colorado, USA. In: Hudson JA, editor. Rock testing and site characterization. Oxford: Pergamon; 1993. p. 811–37. https://doi.org/10.1016/B978-0-08-042066-0.50040-9.
Chapter
Google Scholar
Warpinski NR, Teufel LW. In-situ stresses in low-permeability, nonmarine rocks. In: Low Permeability Reservoirs Symposium 1987. Society of Petroleum Engineers
Warpinski NR, Teufel LW. In situ stress measurements at Rainier Mesa, Nevada test site - Influence of topography and lithology on the stress state in tuff. Int J Rock Mech Mining Sci Geomech Abstr. 1991;28(2):143–61. https://doi.org/10.1016/0148-9062(91)92163-S.
Article
Google Scholar
Warren WE, Smith CW. In situ stress estimates from hydraulic fracturing and direct observation of crack orientation. J Geophys Res. 1985;90(B8):6829–39. https://doi.org/10.1029/JB090iB08p06829.
Article
Google Scholar
White AJ, Traugott MO, Swarbrick RE. The use of leak-off tests as means of predicting minimum in-situ stress. Petrol Geosci. 2002;8:189–93. https://doi.org/10.1144/petgeo.8.2.189.
Article
Google Scholar
Widarsono B, Marsden JR, King MS. In situ stress prediction using differential strain analysis and ultrasonic shear-wave splitting. Geol Soc. 1998;136(1):185–95. https://doi.org/10.1144/GSL.SP.1998.136.01.16.
Article
Google Scholar
Wileveau Y, Cornet FH, Desroches J, Blumling P. Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth A/B/C. 2007;32(8):866–78. https://doi.org/10.1016/j.pce.2006.03.018.
Article
Google Scholar
Worotnicki G, Denham D. State of stress in the upper part of the Earth’s crust in Australia according to measurements in mines and tunnels and from seismic observations. In: Symposium on Investigation of Stress in Rock: Advances in Rock Measurement, 1976;71–82. Institution of Engineers, Australia.
Yale DP. Fault and stress magnitude controls on variations in the orientation of in situ stress. Geol Soc. 2003;209(1):55–64. https://doi.org/10.1144/GSL.SP.2003.209.01.06.
Article
Google Scholar
Yamamoto K, Kuwahara Y, Kato N, Hirasawa T. Deformation rate analysis: a new method for in situ stress estimation from inelastic deformation of rock samples under uni-axial compression. Tohoku Geophys J. 1990;33(2):127–47.
Google Scholar
Zang A, Stephansson O. Stress Field of the Earth’s Crust. Springer, Berlin (2010). https://doi.org/10.1007/978-1-4020-8444-7
Zang A, Stephansson O, Heidbach O, Janouschkowetz S. World Stress Map Database as a Resource for Rock Mechanics and Rock Engineering. Geotechn Geol Eng. 2012;30(3):625–46. https://doi.org/10.1007/s10706-012-9505-6.
Article
Google Scholar
Zhang X, Jeffrey RG, Bunger AP, Thiercelin M. Initiation and growth of a hydraulic fracture from a circular wellbore. Int J Rock Mech Mining Sci. 2011;48(6):984–95. https://doi.org/10.1016/j.ijrmms.2011.06.005.
Article
Google Scholar
Ziegler M. Matlab Script FAST Calibration v1.0 – Fast Automatic Stress Tensor Calibration. Published via GFZ Data Services 2018. https://doi.org/10.5880/wsm.2018.003
Ziegler MO, Heidbach O. The 3d stress state from geomechanical-numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin. Geotherm Energy. 2020;8:1–21. https://doi.org/10.1186/s40517-020-00162-z.
Article
Google Scholar
Ziegler MO, Heidbach O, Reinecker J, Przybycin AM, Scheck-Wenderoth M. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin. Solid Earth. 2016;7(5):1365–82. https://doi.org/10.5194/se-7-1365-2016.
Article
Google Scholar
Zoback MD. Reservoir Geomechanics. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511586477
Zoback MD, Zoback ML. Tectonic stress field of North America and relative plate motions. Neotect North Am. 1991;1:339–66. https://doi.org/10.1130/DNAG-CSMS-NEO.339.
Article
Google Scholar
Zoback ML. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. J Geophys Res. 1992;97(B8):11703–28. https://doi.org/10.1029/92JB00132.
Article
Google Scholar
Zoback ML, Zoback MD. Tectonic stress field of the continental united states. Geophys Framework Contin US. 1989;172:523–39. https://doi.org/10.1130/MEM172-p523.
Article
Google Scholar
Zoback MD, Harjes H-P. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site. J Geophys Res. 1997;102:18477–91. https://doi.org/10.1029/96JB02814.
Article
Google Scholar
Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peška P, Ward CD, Wiprut DJ. Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Mining Sci. 2003;40(7):1049–76. https://doi.org/10.1016/j.ijrmms.2003.07.001 Special Issue of the IJRMMS: Rock Stress Estimation ISRM Suggested Methods and Associated Supporting Papers.
Article
Google Scholar