Al-Harthi AA, Al-Amri RM, Shehata WM: The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng Geol 1999, 54: 313–320.
Article
Google Scholar
Ashby MF, Sammis CG: The damage mechanics of brittle solids in compression. Pure Appl Geophys 1990, 133: 489–521.
Article
Google Scholar
Barton CA, Zoback MD: Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole. J Geophys Res 1992, 97(B4):5181–5200.
Article
Google Scholar
Baud P, Wong T-F, Zhu W: Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 2014, ᅟ: ᅟ. (in press) (in press)
Google Scholar
Bernard M-L, Zamora M, Géraud Y, Boudon G: Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res 2007., 112:
Google Scholar
Bibby HM, Caldwell TG, Davey F, Webb T: Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geotherm Res 1995, 68: 29–58.
Article
Google Scholar
Bieniawski ZT: Mechanism of brittle fracture of rock part II - experimental studies. Int J Rock Mech Min Sci 1967, 4: 407–423.
Article
Google Scholar
Blake OO, Faulkner DR, Rietbrock A: The effect of varying damage history in crystalline rocks on the P- and S-wave velocity under hydrostatic confining pressure. Pure Appl Geophys 2012, 170: 493–505.
Article
Google Scholar
Bloomberg S, Rissmann C, Mazot A, Oze C, Horton T, Kennedy B, Werner C, Christenson B, Pawson J: Soil gas flux exploration at the Rotokawa Geothermal Field and White Island, New Zealand. In Proceedings, Thirty Sixth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California; 2012. 30 January 30 to 1 February 2012 30 January 30 to 1 February 2012
Google Scholar
Bourbie T, Zinszner B: Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 1985, 90: 11524–11532.
Article
Google Scholar
Brace WF, Bombolakis EG: A note on brittle crack growth in compression. J Geophys Res 1963, 68: 3709–3713.
Article
Google Scholar
Brace WF, Paulding B, Scholz C: Dilatancy in the fracture of crystalline rocks. J Geophys Res 1966, 71: 3939–3953.
Article
Google Scholar
Brace WF, Walsh JB, Frangos WT: Permeability of granite under high pressure. J Geophys Res 1968, 73: 2225–2236.
Article
Google Scholar
Byerlee JD: Friction of rocks. Pure Appl Geophys 1978, 116: 615–626.
Article
Google Scholar
Chaki S, Takarli M, Agbodjan WP: Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 2008, 22: 1456–1461.
Article
Google Scholar
Chang C, Zoback MD, Khaksar A: Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 2006, 51: 223–237.
Article
Google Scholar
Cole JW: Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bull Volcanol 1990, 52: 445–459.
Article
Google Scholar
Collar RJ, Browne PRL: Hydrothermal eruptions at The Rotokawa Geothermal Field, Taupo Volcanic Zone, New Zealand. In Proceedings of the seventh New Zealand geothermal workshop, University of Auckland. Geothermal Institute, Auckland, New Zealand; 1985. 6–8 November 1985 6–8 November 1985
Google Scholar
Costa A: Permeability-porosity relationship: a re-examination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 2006., 33:
Google Scholar
David C, Menendez B, Darot M: Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min Sci 1999, 36: 433–448.
Article
Google Scholar
Diamantis K, Gartzos E, Migiros G: Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Eng Geol 2009, 108: 199–207.
Article
Google Scholar
Diederichs M, Kaiser P, Eberhardt E: Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 2004, 41: 785–812.
Article
Google Scholar
DiPippo R: Geothermal power plants: principles, applications, case studies and environmental impact. Elsevier Ltd, Oxford; 2008.
Google Scholar
Doyen PM: Permeability, conductivity, and pore geometry of sandstone. J Geophys Res 1988, 93: 7729–7740.
Article
Google Scholar
Eberhardt E, Stead D, Stimpson B, Read RS: Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 1998, 35: 222–233.
Article
Google Scholar
Ellis DV, Singer JM: Well logging for earth scientists. Springer, Dordrecht; 2008.
Google Scholar
Faoro I, Vinciguerra S, Marone C, Elsworth D, Schubnel A: Linking permeability to crack density evolution in thermally stressed rocks under cyclic loading. Geophys Res Lett 2013, 40: 2590–2595.
Article
Google Scholar
Ferrero AM, Marini P: Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mech Rock Eng 2001, 34: 57–66.
Article
Google Scholar
Finger J, Blankenship D: Handbook of best practices for geothermal drilling. Sandia National Laboratories, Albuquerque; 2010.
Google Scholar
Fredrich JT, Wong T: Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 1986, 91: 12743–12764.
Article
Google Scholar
Géraud Y: Variations of connected porosity and inferred permeability in a thermally cracked granite. Geophys Res Lett 1994, 21: 979–982.
Article
Google Scholar
Grant MA, Bixley PF: Geothermal reservoir engineering. Elsevier Science Ltd, Oxford; 2011.
Google Scholar
Guéguen Y, Palciauskas V: Introduction to the physics of rocks. Princeton University Press, Princeton; 1994.
Google Scholar
Guéguen Y, Schubnel A: Elastic wave velocities and permeability of cracked rocks. Tectonophysics 2003, 370: 163–176.
Article
Google Scholar
Gupta H, Sukanta R: Geothermal energy: an alternative resource for the 21st century. Elsevier B.V., Oxford; 2006.
Google Scholar
Hardy H: Applications of acoustic emission techniques to rock and rock structures: a state of the art review. In Acoustic emission in geotechnical engineering practice. Edited by: Drnevich V, Gray R. American Society for Testing and Materials, University of Michigan, Ann Arbor; 1981.
Google Scholar
Heap MJ, Faulkner DR: Quantifying the evolution of static elastic properties as crystalline rock approaches failure. Int J Rock Mech Min Sci 2008, 45: 564–573.
Article
Google Scholar
Heap MJ, Vinciguerra S, Meredith PG: The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 2009, 471: 153–160.
Article
Google Scholar
Heap MJ, Lavallée Y, Laumann A, Hess K-U, Meredith PG, Dingwell DB, Huismann S, Weise F: The influence of thermal-stressing (up to 1000°C) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete. Construct Build Mater 2013, 42: 248–265.
Article
Google Scholar
Heap MJ, Lavallee Y, Petrakova L, Baud P, Reushcle T, Varley NR, Dingwell DB: Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima Mexico. J Geophys Res 2014, 119: 2925–2963.
Article
Google Scholar
Heard HC, Page L: Elastic moduli, thermal expansion, and inferred permeability of two granites to 350°C and 55 megapascals. J Geophys Res 1982, 87: 9340–9348.
Article
Google Scholar
Hedenquist JW, Mroczek EK, Giggenbach WF: Geochemistry of the Rotokawa geothermal system: summary of data, interpretation and appraisal for energy development. In Chemistry Division DSIR Technical Note 88/6. ᅟ, ᅟ; 1988.
Google Scholar
Hole HM: Geothermal drilling - keep it simple. In Proceedings of the 35th New Zealand geothermal workshop. ᅟ, Rotorua, New Zealand; 2013. 17–20 November 2013 17–20 November 2013
Google Scholar
Horie T, Muto T: The world’s largest single cylinder geothermal power generation unit - Nga Awa Purua Geothermal Power Station, New Zealand. Geothermal Res Council Trans 2010, 34: 1039–1044.
Google Scholar
Jafari A, Babadagli T: Effective fracture network permeability of geothermal reservoirs. Geothermics 2011, 40: 25–38.
Article
Google Scholar
Jaya MS, Shapiro SA, Kristinsdóttir LH, Bruhn D, Milsch H, Spangenberg E: Temperature dependence of seismic properties in geothermal rocks at reservoir conditions. Geothermics 2010, 39: 115–123.
Article
Google Scholar
Ju Y, Yang Y, Peng R, Mao L: Effects of pore structures on static mechanical properties of sandstone. J Geotech Geoenvironmental Eng 2013, 139: 1745–1755.
Article
Google Scholar
Kahraman S: Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 2001, 38: 981–994.
Article
Google Scholar
Kahraman S, Gunaydin O, Fener M: The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 2005, 42: 584–589.
Article
Google Scholar
Keshavarz M, Pellet FL, Loret B: Damage and changes in mechanical properties of a gabbro thermally loaded up to 1,000°C. Pure Appl Geophys 2010, 167: 1511–1523.
Article
Google Scholar
Klinkenberg LJ: The permeability of porous media to liquids and gases. Drilling and production practice. American Petroleum Institute, New York; 1941.
Google Scholar
Kristinsdóttir LH, Flóvenz ÓG, Árnason K, Bruhn D, Milsch H, Spangenberg E, Kulenkampff J: Electrical conductivity and P-wave velocity in rock samples from high-temperature Icelandic geothermal fields. Geothermics 2010, 39: 94–105.
Article
Google Scholar
Krupp RE, Seward TM: The Rotokawa geothermal system, New Zealand; an active epithermal gold-depositing environment. Econ Geol 1987, 82: 1109–1129.
Article
Google Scholar
Lavallée Y, Benson PM, Heap MJ, Hess KU, Flaws A, Schillinger B, Meredith PG, Dingwell DB: Reconstructing magma failure and the degassing network of dome-building eruptions. Geology 2013, 41: 515–518.
Article
Google Scholar
Legmann H, Sullivan P: The 30 MW Rotokawa I geothermal project five years of operation. In International geothermal conference. Reykjavik, Iceland; 2003. September 2003
Google Scholar
Li L, Aubertin M: A general relationship between porosity and uniaxial strength of engineering materials. Can J Civ Eng 2003, 30: 644–658.
Article
Google Scholar
Lim SS, Martin CD, Åkesson U: In-situ stress and microcracking in granite cores with depth. Eng Geol 2012, 147–148: 1–13.
Article
Google Scholar
Lion M, Skoczylas F, Ledésert B: Effects of heating on the hydraulic and poroelastic properties of Bourgogne limestone. Int J Rock Mech Min Sci 2005, 42: 508–520.
Article
Google Scholar
Luping T: A study of the quantitative relationship between strength and pore-size distribution of porous materials. Cem Concr Res 1986, 16: 87–96.
Article
Google Scholar
Lutz SJ, Hickman S, Davatzes N, Zemach E, Drakos P, Robertson-Tait A: Rock mechanical testing and petrologic analysis in support of well stimulation activities at the Desert Peak Geothermal Field, Nevada. In Proceedings of the thirty-fifth workshop on geothermal reservoir engineering. Stanford University, Stanford, California; 2010. 1–3 February 2010 1–3 February 2010
Google Scholar
Martin CD: The strength of Massive Lac du Bonnet granite around underground openings. Dissertation, University of Manitoba; 1993.
Google Scholar
Martin CD, Chandler NA: The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 1994, 31: 643–659.
Article
Google Scholar
Martínez-Martínez J, Benavente D, García-del-Cura MA: Spatial attenuation: the most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng Geol 2011, 119: 84–95.
Article
Google Scholar
Massiot C, McNamara D, Lewis B, Price L, Bignall G: Statistical corrections of fracture sampling bias in boreholes from acoustic televiewer logs. In New Zealand geothermal workshop proceedings. Auckland, New Zealand; 2012. 19–21 November 2012
Google Scholar
Mueller S, Melnik O, Spieler O: Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 2005, 67: 526–538.
Article
Google Scholar
Nara Y, Meredith PG, Yoneda T, Kaneko K: Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 2011, 503: 52–59.
Article
Google Scholar
Nara Y, Morimoto K, Hiroyoshi N, Yoneda T, Kaneko K, Benson PM: Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. Int J Solids Struct 2012, 49: 2471–2481.
Article
Google Scholar
Nicksiar M, Martin CD: Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech Rock Eng 2012, 45: 607–617.
Article
Google Scholar
Obara Y, Sakaguchi K, Nakayama T, Sugawara K: Anisotropy effect on fracture toughness of rocks. Int J Rock Mech Min Sci Geomech 1992, 30: 137. Abstract Abstract
Google Scholar
Ouchterlony F: Fracture toughness testing of rock with core based specimens. Eng Fract Mech 1990, 35: 351–366.
Article
Google Scholar
Palchik V: Is there a link between the type of the volumetric strain curve and elastic constants, porosity, stress and strain characteristics? Rock Mech Rock Eng 2013, 46: 315–326.
Article
Google Scholar
Palchik V, Hatzor YH: Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Eng Geol 2002, 63: 233–245.
Article
Google Scholar
Pereira J-M, Arson C: Retention and permeability properties of damaged porous rocks. Comput Geotech 2013, 48: 272–282.
Article
Google Scholar
Pola A, Crosta G, Fusi N, Barberini V, Norini G: Influence of alteration on physical properties of volcanic rocks. Tectonophysics 2012, 566–567: 67–86.
Article
Google Scholar
Pola A, Crosta GB, Fusi N, Castellanza R: General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Eng Geol 2014, 169: 1–13.
Article
Google Scholar
Powell T: Natural subsidence at the Rotokawa Geothermal Field and implications for permeability development. Geothermal Res Council Trans 2011, 35: 973–976.
Google Scholar
Quinao J, Sirad-Azwar L, Clearwater J, Hoepfinger V, Le Brun M, Bardsley C: Analyses and modeling of reservoir pressure changes to interpret the Rotokawa Geothermal Field response to Nga Awa Purua Power Station operation. In Proceedings of the 38th workshop on geothermal reservoir engineering. Stanford University, Stanford, California; 2013. 11–13 February 2013
Google Scholar
Rae A: Rotokawa geology and geophysics. GNS Science consultancy report 2007/83 May 2007. GNS Science, Lower Hutt; 2007.
Google Scholar
Rae AJ, McCoy-West AJ, Ramirez LE, Alcaraz SA: Geology of production well RK28. Rotokawa Geothermal Field. GNS Science consultancy report 2009/253 September 2009. GNS Science, Lower Hutt; 2009.
Google Scholar
Rae AJ, McCoy-West AJ, Ramirez LE, McNamara D: Geology of production wells RK30L1 and RK30L2, Rotokawa Geothermal Field. GNS Science consultancy report 2010/02 January 2010. GNS Science, Lower Hutt; 2010.
Google Scholar
Rajabzadeh MA, Moosavinasab Z, Rakhshandehroo G: Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mech Rock Eng 2011, 45: 113–122.
Article
Google Scholar
Ramirez LE, Hitchcock D: Geology of production well RK27L2, Rotokawa Geothermal Field, GNS Science Consultancy Report 2010/100 April 2010. GNS Science, Lower Hutt; 2010.
Google Scholar
Reuschlé T, Gbaguidi Haore S, Darot M: The effect of heating on the microstructural evolution of La Peyratte granite deduced from acoustic velocity measurements. Earth Planet Sci Lett 2006, 243: 692–700.
Article
Google Scholar
Richter D, Simmons G: Microcracks in crustal igneous rocks: microscopy. In The earth’s crust. Edited by: Heacock JG, Keller GV, Oliver JE, Simmons G. American Geophysical Union, Washington, DC; 1977.
Google Scholar
Rowland JV, Sibson RH: Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 2004, 4: 259–283.
Article
Google Scholar
Rowland JV, Wilson CJN, Gravley DM: Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 2010, 190: 89–108.
Article
Google Scholar
Rust AC, Manga M, Cashman KV: Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. J Volcanol Geotherm Res 2003, 122: 111–132.
Article
Google Scholar
Rutter EH: On the nomenclature of mode of failure transitions in rocks. Tectonophysics 1986, 122: 381–387.
Article
Google Scholar
Saar MO, Manga M: Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 1999, 26: 111–114.
Article
Google Scholar
Schöpfer MPJ, Abe S, Childs C, Walsh JJ: The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modelling. Int J Rock Mech Min Sci 2009, 46: 250–261.
Article
Google Scholar
Sewell SM, Cumming WB, Azwar L, Bardsley C: Integrated MT and natural state temperature interpretation for a conceptual model supporting reservoir numerical modelling and well targeting at the Rotokawa Geothermal Field, New Zealand. In Proceedings of the thirty-seventh workshop on geothermal reservoir engineering. Stanford University, Stanford California; 2012. 30 January to 1 February 2012
Google Scholar
Sewell SM, Cumming W, Bardsley CJ, Winick J, Quinao J, Wallis IC, Sherburn S, Bourguignon S, Bannister S: Interpretation of microearthquakes at the Rotokawa Geothermal Field, 2008 to 2012. In Proceedings of the 35th New Zealand geothermal workshop. ᅟ, Rotorua, New Zealand; 2013. 17–20 November 2013
Google Scholar
Sherburn S, Bourguignon S, Bannister S, Sewell S, Cumming B, Bardsley C, Quinao J, Wallis I: Microseismicity at Rotokawa Geothermal Field, 2008 to 2012. In Proceedings of the 35th New Zealand geothermal workshop. ᅟ, Rotorua, New Zealand; 2013. 17–20 November 2013
Google Scholar
Siega C, Grant M, Powell T: Enhancing injection well performance by cold water stimulation in Rotokawa and Kawerau geothermal field. In Proceedings of PNOC-EDC conference. Manila, Philippines; 2009. 27–28 September 2009
Google Scholar
Smith R, Sammonds PR, Kilburn CRJ: Fracturing of volcanic systems: experimental insights into pre-eruptive conditions. Earth Planet Sci Lett 2009, 280: 211–219.
Article
Google Scholar
Sousa LMO, Suárez del Río LM, Calleja L, Ruiz de Argandoña VG, Rey AR: Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 2005, 77: 153–168.
Article
Google Scholar
Stanchits S, Vinciguerra S, Dresen G: Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure Appl Geophys 2006, 163: 975–994.
Article
Google Scholar
Stimac JA, Powell TS, Golla GU: Porosity and permeability of the Tiwi geothermal field, Philippines, based on continuous and spot core measurements. Geothermics 2004, 33: 87–107.
Article
Google Scholar
Stimac J, Nordquist G, Suminar A, Sirad-Azwar L: An overview of the Awibengkok geothermal system, Indonesia. Geothermics 2008, 37: 300–331.
Article
Google Scholar
Takarli M, Prince W, Siddique R: Damage in granite under heating/cooling cycles and water freeze thaw condition. Int J Rock Mech Min Sci 2008, 45: 1164–1175.
Article
Google Scholar
Tugrul A, Gurpinar O: The effect of chemical weathering on the engineering properties of Eocene basalts in northeastern Turkey. Environ Eng Geosci 1997, 3: 225–234.
Article
Google Scholar
Tutluoglu L, Keles C: Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci 2011, 48: 1248–1261.
Article
Google Scholar
Ulusay R, Hudson J: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Elsevier, Antalya, Turkey; 2007.
Google Scholar
Underwood EE: Quantitative stereology for microstructural analysis. In Quantitative stereology. Edited by: Underwood EE. Addison-Wesley, Reading, Massachusetts; 1970.
Google Scholar
Vernik L, Bruno M, Bovberg C: Empirical relations between compressive strength and porosity of siliciclastic rocks. Int J Rock Mech Min Sci Geomech 1993, 30: 677–680.
Article
Google Scholar
Vinciguerra S, Trovato C, Meredith P, Benson P: Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int J Rock Mech Min Sci 2005, 42: 900–910.
Article
Google Scholar
Wallis I, McCormick S, Sewell S, Boseley C: Formation assessment in geothermal using wireline tools - application and early results from the Ngatamariki Geothermal Field, New Zealand. In Proceedings of the New Zealand Geothermal Workshop. ᅟ, Rotorua, New Zealand; 2009. 16–18 November 2009
Google Scholar
Walsh JB: The effect of cracks on the compressibility of rock. J Geophys Res 1965, 70: 381–389.
Article
Google Scholar
Walsh JB: The effect of cracks in rocks on Poisson’s ratio. J Geophys Res 1965, 70: 5249–5257.
Article
Google Scholar
Wang HF, Bonner BP, Carlson SR, Kowallis BJ, Heard HC: Thermal stress cracking in granite. J Geophys Res 1989, 94: 1745–1758.
Article
Google Scholar
Watanabe T, Shimizu Y, Noguchi S, Nakada S: Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4). J Volcanol Geotherm Res 2008, 175: 82–90.
Article
Google Scholar
Wilson CJN, Houghton BF, Mcwilliams MO, Lanphere MA, Weaver SD, Briggs RM: Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 1995, 68: 1–28.
Article
Google Scholar
Wong TF, Baud P: The brittle-ductile transition in porous rock: a review. J Struct Geol 2012, 44: 25–53.
Article
Google Scholar
Wu XY, Baud P, Wong TF: Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone. Int J Rock Mech Min Sci 2000, 37: 143–160.
Article
Google Scholar
Comments
View archived comments (1)