Abell A, Willis K, Lange D. Mercury intrusion porosimetry and image analysis of cement-based materials. J Colloid Interface Sci. 1999;211:39–44.
Article
Google Scholar
Agosta F, Wilson C, Aydin A. The role of mechanical stratigraphy on normal fault growth across a Cretaceous carbonate multi-layer, Central Texas (USA). Ital J Geosci. 2015;134:1–19. https://doi.org/10.3301/IJG.2014.20.
Article
Google Scholar
Akanji L, Nasr G, Bageri M. Core-scale characterisation of flow in tight Arabian formations. J Pet Explor Prod Technol. 2013;3(4):233–41.
Article
Google Scholar
Al-Obaid R, Al-Thawad FM, Gill HS. Identifying, characterizing, and locating conductive fault(s): Multiwell test analysis approach. In: Al-Obaid R, editor. SPE asia pacific oil and gas conference and exhibition, Jakarta, Indonesia, 5–7 April 2005. Richardson: OnePetro; 2005.
Google Scholar
Antonellini M, Tondi E, Agosta F, Aydin A, Cello G. Failure modes in deep-water carbonates and their impact for fault development: Majella Mountain, Central Apennines, Italy. Mar Pet Geol. 2008;25:1074–96. https://doi.org/10.1016/j.marpetgeo.2007.10.008.
Article
Google Scholar
Antonellini M, Petracchini L, Billi A, Scrocca D. First reported occurrence of deformation bands in a platform limestone, the Jurassic Calcare Massiccio Fm., northern Apennines, Italy. Tectonophysics. 2014;628:85–104. https://doi.org/10.1016/j.tecto.2014.04.034.
Article
Google Scholar
Armstrong RT, Sun C, Mostaghimi P, Berg S, Rücker M, Luckham P, Georgiadis A, McClure JE. Multiscale characterization of wettability in porous media. Transp Porous Media. 2021;140:215–40. https://doi.org/10.1007/s11242-021-01615-0.
Article
Google Scholar
Bachmann GH, Müller M. Sedimentary and structural evolution of the German Molasse Basin. Eclogae Geol Helv. 1992;85:519–30. https://doi.org/10.5169/SEALS-167019.
Article
Google Scholar
Bachmann G, Müller M, Weggen K. Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics. 1987;137:77–92.
Article
Google Scholar
Bakhtiari HA, Moosavi A, Kazemzadeh E, Kamran G, Esfahani MR, Vali J. The effect of rock types on pore volume compressibility of limestone and dolomite samples. Geopersia. 2011;1(1):37–82. https://doi.org/10.22059/jgeope.2011.22163.
Article
Google Scholar
Barri AA, Hassan AM, Aljawad MS, Mahmoud M. Effect of treatment conditions on matrix stimulation of carbonate rocks with chelating agents. Arab J Sci Eng. 2021. https://doi.org/10.1007/s13369-021-05633-4.
Article
Google Scholar
Bastos AC, Dillon LD, Vasquez GF, Soares JA. Core derived acoustic, porosity and permeability correlations for computation pseudo-logs. In: Harvey PK, Lovell MA, editors. Core-log integration. London: Geological Society; 1998. p. 141–6.
Google Scholar
Beichel K, Koch R, Wolfgramm M. Die Analyse von Spülproben zur Lokalisierung von Zuflusszonen in Geothermiebohrungen. Beispiel der Bohrungen Gt Unterhaching 1/1a und 2. (Süddeutschland, Molassebecken, Malm). Geol Bl NO-Bayern. 2014;64(1–4):43–65.
Google Scholar
Bertoncello A, Honarpour MM. Standards for characterization of rock properties in unconventional reservoirs: fluid flow mechanism, quality control, and uncertainties. In: Bertoncello A, editor. SPE Annual technical conference and exhibition, New Orleans, Louisiana, U.S.A., 30 September–2 October 2013. Richardson: OnePetro; 2013.
Google Scholar
Böhm F, Koch R, Höferle R, Baasch R. Der Malm in der Geothermiebohrung Pullach Th2 - Faziesanalyse aus Spülproben (München, S-Deutschland). Geol Bl NO-Bayern. 2010;60(1–4):79–112.
Google Scholar
Bohnsack D, Potten M, Pfrang D, Wolpert P, Zosseder K. Porosity–permeability relationship derived from Upper Jurassic carbonate rock cores to assess the regional hydraulic matrix properties of the Malm reservoir in the South German Molasse Basin. Geotherm Energy. 2020;8(12):1–47.
Google Scholar
Bohnsack D, Potten M, Freitag S, Einsiedl F, Zosseder K. Stress sensitivity of porosity and permeability under varying hydrostatic stress conditions for different carbonate rock types of the geothermal Malm reservoir in Southern Germany. Geotherm Energy. 2021;9(15):1–59.
Google Scholar
Boulin PF, Bretonnier P, Gland N, Lombard JM. Contribution of the steady state method to water permeability measurement in very low permeability porous media. Oil Gas Sci Technol. 2012;67(3):387–401.
Article
Google Scholar
Bruna P, Lavenu A, Matonti C, Bertotti G. Are stylolites fluid-flow efficient features? J Struct Geol. 2019;125:270–7.
Article
Google Scholar
Burgess C, Peter C. Formation, Distribution, and Prediction of Stylolites as Permeability Barriers in the Thamama Group Abu Dhabi. In: Burgess C, editor. SPE Proceedings middle east oil technical conference and exhibition, Bahrain 11–14 March 1985. Richardson: OnePetro; 1985.
Google Scholar
Cai J, Zhang Z, Wei W, Guo D, Li S, Zhao P. The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity. Energy. 2019;188:1–10.
Article
Google Scholar
Carman P. Fluid flow through granular beds. Chem Eng Res Des. 1937;75:32–48.
Article
Google Scholar
Chenevert ME, Sharma AK. Permeability and effective pore pressure of shales. SPE Drill Complet. 1993;8:28–34.
Article
Google Scholar
Cheng AH. Poroelasticity: theory and applications of transport in porous media. Cham: Springer; 2016.
Book
Google Scholar
Clarkson CR, Solano N, Bustin RM, Bustin AMM, Chalmers GRL, He L, Melnichenko YB, Radliński AP, Blach TP. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel. 2013;103:606–16.
Article
Google Scholar
Cohen KM, Finney SC, Gibbard PL, Fan J-X. The ICS International Chronostratigraphic chart, international commission on stratigraphy. Episodes. 2013;36:199–204.
Article
Google Scholar
Comisky JT, Newsham KE, Rushing JA, Blasingame TA. A Comparative Study of Capillary-Pressure-Based Empirical Models for Estimating Absolute Permeability in Tight Gas Sands. In: SPE Annual Technical Conference and Exhibition, Anaheim, California, U.S.A., 11–14 November 2007. 2007.
Dastidar R, Sondergeld C, Rai C. An improved empirical permeability estimator from mercury injection for tight clastic rocks. Petrophysics. 2007;48(3):186–90.
Google Scholar
David C, Wong T, Zhu W, Zhang J. Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust. PAGEOPH. 1994;143(1–3):425–56. https://doi.org/10.1007/BF00874337.
Article
Google Scholar
Dimmen V, Rotevatn A, Peacock DCP, Nixon CW, Nærland K. Quantifying structural controls on fluid flow: insights from carbonate-hosted fault damage zones on the Maltese Islands. J Struct Geol. 2017;101:43–57.
Article
Google Scholar
Drews MC, Hofstetter P, Zosseder K, Straubinger R, Gahr A, Stollhofen H. Predictability and controlling factors of overpressure in the North Alpine Foreland Basin, SE Germany: an interdisciplinary post-drill analysis of the Geretsried GEN-1 deep geothermal well. Geotherm Energy. 2020;8(20):1–24. https://doi.org/10.1186/s40517-020-00175-8.
Article
Google Scholar
Du S. Prediction of permeability and its anisotropy of tight oil reservoir via precise pore-throat tortuosity characterization and “umbrella deconstruction” method. J Pet Sci Eng. 2019;178:1018–28. https://doi.org/10.1016/j.petrol.2019.03.009.
Article
Google Scholar
Eberli GP, Baechle GT, Anselmetti FS, Incze ML. Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge. 2003;22(7):654–60. https://doi.org/10.1190/1.1599691.
Article
Google Scholar
Fazlikhani H, Bauer W, Stollhofen H. Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and SE Germany. Solid Earth. 2022;13:393–416. https://doi.org/10.5194/se-13-393-2022.
Article
Google Scholar
Fens TW. Petrophysical properties from small rock samples using image analysis techniques [Dissertation]. TU Delft: Technical University Delft; 2000.
Google Scholar
Filomena CM, Stollhofen H. Ultrasonic logging across unconformities—outcrop and core logger sonic patterns of the Early Triassic Middle Buntsandstein Hardegsen unconformity, southern Germany. Sed Geol. 2011;236(3–4):185–96.
Article
Google Scholar
Freitag S, Drews M, Bauer W, Duschl F, Misch D, Stollhofen H. Cretaceous paleo-thicknesses in Central Europe: new insights from shale compaction and thermal history analyses on the Franconian Alb. SE Germany Solid Earth. 2022;13:1003–26. https://doi.org/10.5194/se-13-1003-2022.
Article
Google Scholar
Gao H, Li T, Yang L. Quantitative determination of pore and throat parameters in tight oil reservoir using constant rate mercury intrusion technique. J Pet Explor Prod Technol. 2016;6(2):309–18.
Article
Google Scholar
Giesche H. Mercury porosimetry: a general (practical) overview. Part Part Syst Charact. 2006;23(1):9–19.
Article
Google Scholar
Gosnold W, Lefever R, Mann M, Klenner R, McDonald M, Salehfar H. EGS potential in the northern midcontinent of North America. Geotherm Resour Counc Trans. 2010;34:355–8.
Google Scholar
Graham B, Antonellini M, Aydin A. Formation and growth of normal faults in carbonates within a compressive environment. Geology. 2003;31:11–4. https://doi.org/10.1130/0091-7613(2003)031%3C0011:FAGONF%3E2.0.CO;2.
Article
Google Scholar
Gunter GW, Spain DR, Viro EJ, Thomas JB, Potter G, Williams J. Winland pore throat prediction method - A proper retrospect: New examples from carbonates and complex systems. In: SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 2014. 2014.
Haines TJ, Michie EAH, Neilson JE, Healy D. Permeability evolution across carbonate hosted normal fault zones. Mar Pet Geol. 2016;72:62–82.
Article
Google Scholar
Hall C, Hamilton A. Porosities of building limestones: using the solid density to assess data quality. Mater Struct. 2016;49(10):3969–79.
Article
Google Scholar
Heap MJ, Baud P, Reuschlé T, Meredith PG. Stylolites in limestones: barriers to fluid flow? Geology. 2014;42(1):51–4.
Article
Google Scholar
Hofmann H, Weides S, Babadagli T, Zimmermann G, Moeck I, Majorowicz J, Unsworth M. Potential for enhanced geothermal systems in Alberta, Canada. Energy. 2014;69:578–91.
Article
Google Scholar
Homuth S, Sass I. Outcrop analogue vs. reservoir data: characteristics and controlling factors of physical properties of the upper jurassic geothermal carbonate reservoirs of the Molasse Basin, Germany. In: Thirty-Eighth Workshop on Geothermal Reservoir Engineering; 24–26 February 2014; Stanford, California; 2014.
Homuth S, Götz AE, Sass I. Lithofacies and depth dependency of thermo- and petrophysical rock parameters of the Upper Jurassic geothermal carbonate reservoirs of the Molasse Basin. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften. 2014;165(3):469–86. https://doi.org/10.1127/1860-1804/2014/0074.
Article
Google Scholar
Homuth S, Götz AE, Sass I. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool. Geotherm Energy. 2015;3(1):41–9. https://doi.org/10.5194/gtes-3-41-2015.
Article
Google Scholar
Hu Z, Klaver J, Schmatz J, Dewanckele J, Littke R, Krooss BM, Amann-Hildenbrand A. Stress sensitivity of porosity and permeability of Cobourg limestone. Eng Geol. 2020;273: 105632. https://doi.org/10.1016/j.enggeo.2020.105632.
Article
Google Scholar
Jennings JW, Lucia FJ. Predicting permeability from well logs in carbonates with a link to geology for interwell permeability mapping. SPE Reserv Eval Eng. 2003;6(4):215–25. https://doi.org/10.1016/j.enggeo.2020.105632.
Article
Google Scholar
Katsube TJ, Mudford BS, Best ME. Petrophysical characteristics of shales from the Scotian Shelf. Geophysics. 1991;56:1681–9.
Article
Google Scholar
Katz AJ, Thompson AH. Quantitative prediction of permeability in porous rock. Phys Rev B. 1986;34(11):8179–81.
Article
Google Scholar
Katz AJ, Thompson AH. Prediction of rock electrical conductivity from mercury injection measurements. J Geophys Res. 1987;92(B1):599–607.
Article
Google Scholar
Kiula U, McCarty DK, Derkowski A, Fischer TB, Prasad M. Total porosity measurement in gas shales by the water immersion porosimetry (WIP) method. Fuel. 2014;117:1115–29. https://doi.org/10.1016/j.fuel.2013.09.073.
Article
Google Scholar
Klaver J, Desbois G, Urai JL, Littke R. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. Int J Coal Geol. 2012;103:12–25. https://doi.org/10.1016/j.coal.2012.06.012.
Article
Google Scholar
Klaver J, Hemes S, Houben M, Desbois G, Radi Z, Urai JL. The connectivity of pore space in mudstones: insights from high-pressure Wood’s metal injection, BIB-SEM imaging, and mercury intrusion porosimetry. Geofluids. 2015;15(4):577–91. https://doi.org/10.1111/gfl.12128.
Article
Google Scholar
Kley J, Voigt T. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology. 2008;36:839–42. https://doi.org/10.1130/G24930A.
Article
Google Scholar
Klinkenberg LJ. The permeability of porous media to liquid and gases. Drill Prod Pract. 1941;2:200.
Google Scholar
Koch R, Weiss C. Field Trip A: Basin-Platform Transitions in Upper Jurassic Limestones and Dolomites of the Northern Franconian Alb (Germany). Zitteliana. 2005;26:43–56.
Google Scholar
Koehler S, Duschl F, Fazlikhani H, Köhn D, Stephan T, Stollhofen H. Reconstruction of cyclic Mesozoic-Cenozoic stress development in SE Germany using fault-slip and stylolite inversion. Geol Mag. 2022. https://doi.org/10.1017/S0016756822000656.
Article
Google Scholar
Koehn D, Rood MP, Beaudoin N, Chung P, Bons PD, Gomez-Rivas E. A new stylolite classification scheme to estimate compaction and local permeability variations. Sediment Geol. 2016;346:60–71. https://doi.org/10.1016/j.sedgeo.2016.10.007.
Article
Google Scholar
Korneva I, Tondi E, Agosta F, Rustichelli A, Spina V, Bitonte R, Di Cuia R. Structural properties of fractured and faulted Cretaceous platform carbonates, Murge Plateau (southern Italy). Mar Pet Geol. 2014;57:312–26. https://doi.org/10.1016/j.marpetgeo.2014.05.004.
Article
Google Scholar
Kozeny J. Über kapillare Leitung des Wassers im Boden: Sitzungsberichte der Wiener Akademie der Wissenschaften. Wiener Akademie Der Wissenschaften. 1927;136:271–306.
Google Scholar
Lala AMS, El-Sayed NAA. Controls of pore throat radius distribution on permeability. J Pet Sci Eng. 2017;157:941–50. https://doi.org/10.1016/j.marpetgeo.2014.05.004.
Article
Google Scholar
Li Z, Wu S, Xia D, He S, Zhang X. An investigation into pore structure and petrophysical property in tight sandstones: a case of the Yanchang Formation in the southern Ordos Basin, China. Mar Pet Geol. 2018;97:390–406. https://doi.org/10.1016/j.marpetgeo.2018.07.014.
Article
Google Scholar
Litsey LR, MacBride WL, Al-Hinai KM, Dismukes NB. Shuaiba reservoir geological study, Yibal field, Oman. J Pet Technol. 1986;38(06):651–61. https://doi.org/10.2118/11454-PA.
Article
Google Scholar
Lucia FJ. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bull. 1995;79(9):1275–300. https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D.
Article
Google Scholar
Lucia FJ. Permeability and rock fabric from wireline logs, Arab-D reservoir, Ghawar field, Saudi Arabia. Geoarabia. 2001;6(4):619–46.
Article
Google Scholar
Mehrabi H, Mansouri M, Rahimpour-Bonab H, Tavakoli V, Hassanzadeh M. Chemical compaction features as potential barriers in the Permian-Triassic reservoirs of Southern Iran. J Pet Sci Eng. 2016;145:95–113.
Article
Google Scholar
Meyer RKF. Stratigraphie und Fazies des Frankendolomits (Malm) 2. Teil: Mittlere Frankenalb. Erlanger Geol Abh. 1974;96:3–35.
Google Scholar
Meyer RKF. Kreide. In: Freudenberger W, Schwerd K, editors. Erläuterungen zur Geologischen Karte 1:500000 Bayern. München: Bayerisches Geologisches Landesamt; 1996. p. 112–28.
Google Scholar
Micarelli L, Benedicto A, Invernizzi C, Saint-Bezar B, Michelot JL, Vergely P. Influence of P/T conditions on the style of normal fault initiation and growth in limestones from the SE-Basin, France. J Struct Geol. 2005;27:1577–98. https://doi.org/10.1016/j.jsg.2005.05.004.
Article
Google Scholar
Michie EAH. Influence of host lithofacies on fault rock variation in carbonate fault zones: a case study from the Island of Malta. J Struct Geol. 2015;76:61–79. https://doi.org/10.1016/j.jsg.2015.04.005.
Article
Google Scholar
Moeck IS, Dussel M, Weber J, Schintgen T, Wolfgramm M. Geothermal play typing in Germany, case study Molasse Basin: a modern concept to categorise geothermal resources related to crustal permeability. Neth J Geosci. 2019;98:1–10. https://doi.org/10.1017/njg.2019.12.
Article
Google Scholar
Moosavi SA, Goshtasbi K, Kazemzadeh E, Bakhtiari HA, Esfahani MR, Vali J. Relationship between porosity and permeability with stress using pore volume compressibility characteristic of reservoir rocks. Arab J Geosci. 2014;7(1):231–9. https://doi.org/10.1007/s12517-012-0760-x.
Article
Google Scholar
Mraz E. Reservoir characterization to improve exploration concepts of the Upper Jurassic in the Southern Bavarian Molasse Basin [Dissertation]. TU München: Technical University of Munich; 2019.
Google Scholar
Mraz E, Bohnsack D, Stockinger G, Käsling H, Zosseder K, Thuro K. Die Bedeutung von Analogaufschlüssen des Oberjura für die Interpretation der Lithologie der geothermalen Tiefbohrung Geretsried. Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins. 2018;100:517–47.
Article
Google Scholar
Nenna F, Aydin A. The formation and growth of pressure solution seams in clastic rocks: a field and analytical study. J Struct Geol. 2011;33(4):633–43. https://doi.org/10.1016/j.jsg.2011.01.014.
Article
Google Scholar
Newsham KE, Rushing JA, Lasswell PM, Cox JC, Blasingame TA. A comparative study of laboratory techniques for measuring capillary pressures in tight gas sands. In: SPE annual technical conference and exhibition, Houston, Texas, U.S.A., 26–29 September 2004. 2004.
Nishiyama N, Yokoyama T. Estimation of permeability of sedimentary rocks by applying water-expulsion porosimetry to Katz and Thompson model. Eng Geol. 2014;177:75–82. https://doi.org/10.1306/070615142056.
Article
Google Scholar
O’Neill N. Fahud field review: a switch from water to gas injection. J Pet Technol. 1988;40(05):609–18. https://doi.org/10.1306/07061514205.
Article
Google Scholar
Okolo GN, Everson RC, Neomagus HWJP, Roberts MJ, Sakurovs R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel. 2015;141:293–304. https://doi.org/10.1306/07061514205.
Article
Google Scholar
Pei L, Rühaak W, Stegner J, Bär K, Homuth S, Mielk P, Sass I. Thermo-Triax: an apparatus for testing petrophysical properties of rocks under simulated geothermal reservoir conditions. Geotech Test J. 2014;38(1):20140056. https://doi.org/10.1520/GTJ20140056.
Article
Google Scholar
Peterek A, Rauche H, Schröder B. Die strukturelle Entwicklung des E-Randes der Süddeutschen Scholle in der Kreide. Z Geol Wiss. 1996;24(1/2):65–77.
Google Scholar
Peterek A, Rauche H, Schröder B, Franzke H-J, Bankwitz P, Bankwitz E. The late- and post-Variscan tectonic evolution of the Western Border fault zone of the Bohemian massif (WBZ). Geol Rundschau. 1997;86:191–202.
Article
Google Scholar
Pharaoh TC, Dusar M, Geluk MC, Kockel F, Krawczyk CM, Krzywiec P, Scheck-Wenderoth M, Thybo H, Vejbæk OV, Van Wees JD. Tectonic evolution. In: Doornenbal H, Stevenson AG, editors. Petroleum Geological Atlas of the Southern Permian Basin Area. Utrecht: TNO Geological Survey of the Netherlands; 2010. p. 25–57.
Google Scholar
Philipp T, Amann-Hildenbrand A, Laurich B, Desbois G, Littke R, Urai JL. The effect of microstructural heterogeneity on pore size distribution and permeability in Opalinus Clay (Mont Terri, Switzerland): insights from an integrated study of laboratory fluid flow and pore morphology from BIB-SEM images. Geol Soc Lond Special Publ. 2017;454(1):85–106. https://doi.org/10.1144/SP454.3.
Article
Google Scholar
Pieńkowski G, Schudack ME, Bosák P, Enay R, Feldman-Olszewska A, Golonka J, Gutowski J, Herngreen GFW, Jordan P, Krobicki M, Lathuiliere B, Leinfelder RR, Michalík J, Mönnig E, Noe-Nygarrd N, Pálfy J, Pint A, Rasser MW, Reisdorf AG, Schmid DU, Schweigert G, Surlyk F, Wetzel A, Wong TE. In: McCann T, editor. The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic, London: The Geological Society of London; 2008. p. 823-922.
Potten M. Geomechanical characterization of sedimentary and crystalline geothermal reservoir [Dissertation]. TU Munich: Technical University of Munich; 2020.
Google Scholar
Potten M, Sellmeier B, Mraz E, Thuro K. Geomechanical Investigation of High Priority Geothermal Strata in the Molasse Basin, Bavaria, Germany. In: Shakoor A, Cato K, editors. IAEG/AEG Annual Meeting Proceedings, San Francisco, California, vol. 2. Cham: Springer; 2019. p. 21–6. https://doi.org/10.1007/978-3-319-93127-2_4.
Chapter
Google Scholar
Rashid F, Glover PWJ, Lorinczi P, Hussein D, Collier R, Lawrence J. Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar Pet Geol. 2015;68:536–50. https://doi.org/10.1016/j.marpetgeo.2015.10.005.
Article
Google Scholar
Rashid F, Glover PWJ, Lorinczi P, Hussein D, Lawrence J. Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. J Pet Sci Eng. 2017;156:814–26. https://doi.org/10.1016/j.petrol.2017.06.056.
Article
Google Scholar
Reicherter K, Froitzheim N, Jarosiński M, Badura J, Franzke H-J, Hansen M, Hübscher C, Müller R, Poprawa P, Reinecker J, Stackebrandt W, Voigt T, von Eynatten H, Zuchiewicz W. Alpine tectonics north of the Alps. In: McCann T, editor. The Geology of Central Europe, Mesozoic and Cenozoic, vol. 2. Bonn: The Geological Society London; 2008. p. 1233–86.
Chapter
Google Scholar
Sagi DA, De Paola N, McCaffrey KJW, Holdsworth RE. Fault and fracture patterns in low porosity chalk and their potential influence on sub-surface fluid flow—a case study from Flamborough Head, UK. Tectonophysics. 2016;690:35–51. https://doi.org/10.1016/j.tecto.2016.07.009.
Article
Google Scholar
Saki M, Siahpoush S, Khaz’ali AR. A new generalized equation for estimation of sandstone and carbonate permeability from mercury intrusion porosimetry data. J Pet Explor Prod Technol. 2020;10(7):2637–44. https://doi.org/10.1007/s13202-020-00900-w.
Article
Google Scholar
Sander R, Pan Z, Connell LD. Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods. J Nat Gas Sci Eng. 2017;37:248–79. https://doi.org/10.1016/j.jngse.2016.11.041.
Article
Google Scholar
Scheck-Wenderoth M, Krzywiec P, Zühlke R, Maystrenko Y, Froitzheim N. Permian to Cretaceous tectonics. In: McCann T, editor. The Geology of Central Europe, Mesozoic and Cenozoic, vol. 2. Bonn: The Geological Society London; 2008. p. 999–1030.
Chapter
Google Scholar
Schön JP. Physical properties of rocks: fundamentals and principles of petrophysics. Amsterdan: Elsevier; 2015.
Google Scholar
Schröder B. Zur Morphogenese im Ostteil der Süddeutschen Scholle. Geol Rundschau. 1968;58:10–32.
Article
Google Scholar
Schröder B. Inversion tectonics along the western margin of the Bohemian Massif. Tectonophysics. 1987;137:93–100.
Article
Google Scholar
Selvadurai APS, Głowacki A. Permeability hysteresis of limestone during isotropic compression. Ground Water. 2008;46(1):113–9. https://doi.org/10.1111/j.1745-6584.2007.00390.x.
Article
Google Scholar
Shi Y, Wang CY. Pore pressure generation in sedimentary basins: overloading versus aquathermal. J Geophys Res Solid Earth. 1986;91(B2):2153–62.
Article
Google Scholar
Si L, Li Z, Yang Y. Influence of the pore geometry structure on the evolution of gas permeability. Transp Porous Media. 2018;123(2):321–39. https://doi.org/10.1007/s11242-018-1044-z.
Article
Google Scholar
Sigal RF. A methodology for blank and conformance corrections for high pressure mercury porosimetry. Meas Sci Technol. 2009;20:1–11. https://doi.org/10.1088/0957-0233/20/4/045108.
Article
Google Scholar
Sinn CJA, Klaver J, Fink R, Jiang M, Schmatz J, Littke R, Urai JL. Using BIB-SEM imaging for permeability prediction in heterogeneous shales. Geofluids. 2017. https://doi.org/10.1155/2017/4709064.
Article
Google Scholar
Smodej J, Lemmens L, Reuning L, Hiller T, Klitzsch N, Claes S, Kukla PA. Nano- to millimeter scale morphology of connected and isolated porosity in the Permo-Triassic Khuff formation of Oman. Geosciences. 2020;10(7):1–29. https://doi.org/10.3390/geosciences10010007.
Article
Google Scholar
Stober I, Bucher K. Geothermal Energy. Berlin: Springer-Verlag; 2013. https://doi.org/10.1007/978-3-642-13352-7.
Book
Google Scholar
Tondi E. Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy). J Struct Geol. 2007;29:614–28. https://doi.org/10.1016/j.jsg.2006.11.006.
Article
Google Scholar
Toussaint R, Aharonov E, Koehn D, Gratier J-P, Ebner M, Baud P, Rolland A, Renard F. Stylolites: a review. J Struct Geol. 2018;114:163–95. https://doi.org/10.1016/j.jsg.2018.05.003.
Article
Google Scholar
Vandeginste V, John CM. Diagenetic implications of stylolitization in pelagic carbonates, Canterbury basin, offshore New Zealand. J Sediment Res. 2013;83:226–40. https://doi.org/10.2110/jsr.2013.18.
Article
Google Scholar
Vejbæk OV, Andersen C, Dusar M, Herngreen GFW, Krabbe H, Leszczyński K, Lott GK, Mutterlose J, Van der Molen AS. Cretaceous. In: Doornenbal H, Stevenson AG, editors. Petroleum geological atlas of the southern Permian Basin Area. Utrecht: TNO Geological Survey of the Netherlands; 2010. p. 195–209.
Google Scholar
Voigt S, Aurag A, Leis F, Kaplan U. Late Cenomanian to Middle Turonian high-resolution carbon isotope stratigraphy: new data from the Münsterland Cretaceous Basin. Germany Earth Planet Sci Lett. 2007;253:196–210. https://doi.org/10.1016/j.epsl.2006.10.026.
Article
Google Scholar
Voigt S, Wagreich M, Surlyk F, Walaszczyk I, Uličný D, Čech S, Voigt T, Wiese F, Wilmsen M, Niebuhr B, Reich M, Funk H, Michalík J, Jagt JWM, Felder PJ, Schulp AS. Cretacteous. In: McCann T, editor. The Geology of Central Europe, Mesozoic and Cenozoic, vol. 2. Bonn: The Geological Society London; 2008. p. 923–98.
Chapter
Google Scholar
Voigt T, Kley J, Voigt S. Dawn and dusk of Late Cretaceous basin inversion in central Europe’. Solid Earth. 2021;12:1443–71. https://doi.org/10.5194/se-12-1443-2021.
Article
Google Scholar
Von Eynatten H, Kley J, Dunkl I, Hoffmann V-E, Simon A. Late Cretaceous to Paleogene exhumation in central Europe—localized inversion vs. large-scale domal uplift. Solid Earth. 2021;12:935–58. https://doi.org/10.5194/se-12-935-2021.
Article
Google Scholar
Wagner GA, Coyle DA, Duyster J, Henjes-Kunst F, Peterek A, Schröder B, Stöckhert B, Wemmer K, Zulauf G, Ahrendt H, Bischoff R, Hejl E, Jacobs J, Menzel D, Lal N, van den Haute P, Vercoutere C, Welzel B. Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings. J Geophys Res. 1997;102:18221–32.
Article
Google Scholar
Washburn EW. The dynamics of capillary flow. Phys Rev. 1921;17(3):273–83.
Article
Google Scholar
Webb PA. An Introduction To The Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis On Reduction And Presentation of Experimental Data. Micromeritics Instruments Corp. 2001.
Weber ME, Niessen F, Kuhn G, Wiedicke M. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Mar Geol. 1997;136:151–72.
Article
Google Scholar
Weber J, Born H, Moeck I. Geothermal energy use, country update for Germany 2016–2018. In: European Geothermal Congress, Den Haag, Netherland, 11–14 June 2019. 2019.
Weger RJ, Baechle GT, Masaferro JL, Eberli GP. Effects of porestructure on sonic velocity in carbonates. In: SEG 74th Annual Meeting, Dallas, Texas, U.S.A., 10–15 October 2004. 2004. https://library.seg.org/doi/10.1190/1.1845169.
Wu Y, Tahmasebi P, Lin C, Zahid MA, Dong C, Golab A, Ren L. A comprehensive study on geometric, topological and fractal characterization of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT experiments. Mar Pet Geol. 2019;103:12–28. https://doi.org/10.1016/j.marpetgeo.2019.02.003.
Article
Google Scholar
Xu C, Lin C, Kang Y, You L. An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression: characteristics, mechanisms and controlling factors. Rock Mech Rock Eng. 2018a;51:2321–38. https://doi.org/10.1007/s00603-018-1481-6.
Article
Google Scholar
Xu Y, Wang Y, Yuan H, Zhang D, Agostini F, Skoczylas F. Pore structure characterization of tight sandstone from Sbaa Basin, Algeria: Investigations using multiple fluid invasion methods. J Nat Gas Sci Eng. 2018b;59:414–26. https://doi.org/10.1016/j.jngse.2018.09.021.
Article
Google Scholar
Zeiss A. Jurassic stratigraphy of Franconia. Stuttgarter Beiträge Zur Naturkunde Serie b. 1977;31:1–32.
Google Scholar
Zeybeck M, Kuchuk FJ. Fault and fracture characterization using 3D interval pressure transient tests. In: Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, United United Arab Emirates, 13–16 October 2002. 2002.
Zhao X, Yang Z, Lin W, Xiong S, Wei Y. Characteristics of microscopic pore-throat structure of tight oil reservoirs in Sichuan Basin measured by rate-controlled mercury injection. Open Physics. 2018;16(1):675–84. https://doi.org/10.1515/phys-2018-0086.
Article
Google Scholar
Ziauddin ME, Bize E. The effect of pore scale heterogeneities on carbonate stimulation treatments. In: SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 11–14 2007.
Ziegler PA. Late Cretaceous and Ceonzoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics. 1987;137:389–420.
Article
Google Scholar
Ziegler PA. Geological Atlas of Western and Central Europe. 2nd ed. London: Geological Society Publishing House; 1990.
Google Scholar
Ziegler PA, Cloetingh S, van Wees JD. Dynamics of intraplate compressional deformation: the Alpine foreland and other examples. Tectonophysics. 1995;252:7–59.
Article
Google Scholar
Zinszner B, Pellerin F-M. A geoscientist’s guide to petrophysics. Paris: Editions Technip; 2007.
Google Scholar
Zoback MD, Byerlee JD. The effect of microcrack dilatancy on the permeability of westerly granite. J Geophys Res. 1975;80(5):752–5. https://doi.org/10.1029/JB080i005p00752.
Article
Google Scholar
Zulauf G. Brittle deformation events at the western border of the Bohemian Massif (Germany). Geol Rundschau. 1993;82:489–504.
Article
Google Scholar