Ahlers S, Hergert T, Henk A. Numerical modelling of salt-related stress decoupling in sedimentary basins-motivated by observational data from the North German Basin. Geosciences. 2019. https://doi.org/10.3390/geosciences9010019.
Article
Google Scholar
Ahlers S, Henk A, Hergert T, Reiter K, Müller B, Röckel L, Heidbach O, Morawietz S, Scheck-Wenderoth M, Anikiev D. 3D crustal stress state of Germany according to a data-calibrated geomechanical model. Solid Earth. 2021a;12:1777–99. https://doi.org/10.5194/se-12-1777-2021.
Article
Google Scholar
Ahlers S, Henk A, Hergert T, Reiter K, Müller B, Röckel L, Heidbach O, Morawietz S, Scheck-Wenderoth M, and Anikiev D (2022) The Crustal stress state of Germany—results of a 3D geomechnical model v2. TUdatalib. https://doi.org/10.48328/tudatalib-437.5.
Aichholzer C, Duringer P, Orciani S, Genter A. New stratigraphic interpretation of the Soultz-sous-Forêts 30-year-old geothermal wells calibrated on the recent one from Rittershoffen (Upper Rhine Graben, France). Geothermal Energy. 2016;4:1–26. https://doi.org/10.1186/s40517-016-0055-7.
Article
Google Scholar
Alber M, Solibida C. Geomechanical characterization of a host rock for enhanced geothermal system in the North-German Basin. Procedia Engineering. 2017;191:158–63. https://doi.org/10.1016/j.proeng.2017.05.167.
Article
Google Scholar
Alber M, Backers T, Bartmann K, Brenne S, Dinter S, Dresen G, Gipper P, Grühser C, Heft S, Meier T, Molenda M, Röske F, Stöckhert F. Abschlussbericht zum Verbundprojekt: Erforschung der Mechanismen und Simulation hydraulisch induzierter Risse in geklüfteten Gesteinen für die Optimierung des Aufschlusses geothermischer Lagerstätten, Ruhr-Universität Bochum, geomecon GmbH, 2015.
Anderson EM. The dynamics of faulting. Trans Edinb Geol Soc. 1905;8:387–402. https://doi.org/10.1144/transed.8.3.387.
Article
Google Scholar
Angelier J. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics. 1979;56:T17–26. https://doi.org/10.1016/0040-1951(79)90081-7.
Article
Google Scholar
Anikiev D, Lechel A, Gomez Dacal ML, Bott J, Cacace M, Scheck-Wenderoth M. A three-dimensional lithospheric-scale thermal model of Germany. Adv Geosci. 2019;49:225–34. https://doi.org/10.5194/adgeo-49-225-2019.
Article
Google Scholar
Asch K. The 1:5 Million International Geological Map of Europe and Adjacent Areas (IGME5000). Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe; 2005.
Google Scholar
Azzola J, Valley B, Schmittbuhl J, Genter A. Stress characterization and temporal evolution of borehole failure at the Rittershoffen geothermal project. Solid Earth. 2019;10:1155–80. https://doi.org/10.5194/se-10-1155-2019.
Article
Google Scholar
Backers T, Meier T, Gipper P, Munsch P, Bücken D, Nokar K, Dinter S, Grühser C, Heft S, Röske F. Abschlussbericht zum Teilprojekt B: Struktur- und Spannungsfeld im Verbundprojekt MAFA: Parametrisierung von Fazies, Diagenese, Struktur- und Spannungsfeld sowie Optimierung der Testabläufe im Malm zur Verringerung des Erfolgsrisikos, geomecon GmbH, 44 pp., 2017.
Bär K, Reinsch T, Bott J. The PetroPhysical Property Database (P3)—a global compilation of lab-measured rock properties. Earth Syst Sci Data. 2020;12:2485–515. https://doi.org/10.5194/essd-12-2485-2020.
Article
Google Scholar
Brückl E, Behm M, Decker K, Grad M, Guterch A, Keller GR, Thybo H. Crustal structure and active tectonics in the Eastern Alps. Tectonics. 2010. https://doi.org/10.1029/2009TC002491.
Article
Google Scholar
Buchmann TJ, Connolly PT. Contemporary kinematics of the Upper Rhine Graben: A 3D finite element approach. Global Planet Change. 2007;58:287–309. https://doi.org/10.1016/j.gloplacha.2007.02.012.
Article
Google Scholar
Budach I, Moeck I, Lüschen E, Wolfgramm M. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching. Geol Rundsch. 2017;107:635–53. https://doi.org/10.1007/s00531-017-1518-1.
Article
Google Scholar
Cacace M, Bayer U, Marotta AM. Strain localization due to structural in-homogeneities in the Central European Basin System. Geol Rundsch. 2008;97:899–913. https://doi.org/10.1007/s00531-007-0192-0.
Article
Google Scholar
Cacace M. Stress and strain modelling of the Central European Basin System, Ph. D. thesis, Freie Universität Berlin, Berlin, 167 pp., 2008.
Chang CT, Zoback MD. Viscous rheology and state of stress in unconsolidated sands, rock mechanics in petroleum engineering, Trondheim, Norway. 1998;465–473, https://doi.org/10.2118/47401-MS
Connolly P, Cosgrove J. Prediction of static and dynamic fluid pathways within and around dilational jogs. Geol Soc London Spl Publ. 1999;155:105–21. https://doi.org/10.1144/GSL.SP.1999.155.01.09.
Article
Google Scholar
Cornet FH, Röckel T. Vertical stress profiles and the significance of “stress decoupling.” Tectonophysics. 2012;581:193–205. https://doi.org/10.1016/j.tecto.2012.01.020.
Article
Google Scholar
Cornet FH, Burlet D. Stress field determinations in France by hydraulic tests in boreholes. J Geophys Res-Sol Ea. 1992;97:11829–49. https://doi.org/10.1029/90JB02638.
Article
Google Scholar
Drews MC, Seithel R, Savvatis A, Kohl T, Stollhofen H. A normal-faulting stress regime in the Bavarian Foreland Molasse Basin? New evidence from detailed analysis of leak-off and formation integrity tests in the greater Munich Area, SE-Germany. Tectonophysics. 2019;755:1–9. https://doi.org/10.1016/j.tecto.2019.02.011.
Article
Google Scholar
Dubelaar CW, Nijland TG. Early Cretaceous Obernkirchen and Bentheim Sandstones from Germany used as dimension stone in the Netherlands: geology, physical properties, architectural use and comparative weathering, in: Geomaterials in construction and their sustainability: understanding their role in modern society, edited by: Přikryl, R., Török, Á., Theodoridou, M., Gomez-Heras, M., and Miskovsky, K., 163–181, https://doi.org/10.1144/SP416.13, 2016.
Eckert A, Connolly P. 2D finite element modelling of regional and local fracture networks in the Eastern California shear zone and coso range, California USA, Transactions - Geothermal Resources Council, 28, 643–648, 2004
Feist-Burkhardt S, Götz AE, Szulc J, Borkhataria R, Geluk M, Haas J, Hornung J, Jordan P, Kempf O, Michalik J, Nawrocki J, Reinhardt L, Ricken W, Röhling H-G, Rüffer T, Török Á, and Zühlke R. Triassic, in: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 749–821, https://doi.org/10.1144/CEV2P.1, 2008.
Fleckenstein P, Reuschke G, Müller B, and Connolly P. Predicting stress re-orientations associated with major geological structures in sedimentary sequences, DGMK, 593–5, 90 pp., 2004.
Garrard R, Gonus J, Desroches J, and Bailey E. TBO Bülach-1–1: Data Report - Dossier VI Wireline Logging and Microhydraulic Fracturing, nagra, Arbeitsbericht NAB, 20–08, 2021.
GeORG-Projektteam: Geopotentiale des tieferen Untergrundes im Oberrheingraben: Fachlich-Technischer Abschlussbericht des INTERREG-Projekts GeORG, Teil 4, Freiburg i. Br., 104 pp., 2013.
Grünthal G, Stromeyer D. The recent crustal stress field in Central Europe sensu lato and its quantitative modelling. Geol Mijnbouw. 1994;73:173–80.
Google Scholar
Häring MO, Schanz U, Ladner F, Dyer BC. Characterisation of the Basel 1 enhanced geothermal system. Geothermics. 2008;37:469–95. https://doi.org/10.1016/j.geothermics.2008.06.002.
Article
Google Scholar
Heidbach O, Reinecker J, Tingay M, Müller B, Sperner B, Fuchs K, Wenzel F. Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database. Tectonics. 2007. https://doi.org/10.1029/2007TC002133.
Article
Google Scholar
Heidbach O, Hergert T, Reiter K, Giger S. NAB 13–88: Local Stress field sensitivity analysis—Case study Nördlich Langen, Wettingen, 50 pp., 2014.
Heidbach O, Ziegler M, Stromeyer D (2020) Manual of the Tecplot 360 Add-on GeoStress v2.0. World stress map technical report, 20–02, pp 62. https://doi.org/10.5880/wsm.2020.001
Heidbach O, Rajabi M, Reiter K, Ziegler M, WSM Team: World Stress Map Database Release 2016 v1.1, GFZ Data Services , https://doi.org/10.5880/WSM.2016.001, 2016.
Hergert T, Heidbach O, Reiter K, Giger SB, Marschall P. Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, Northern Switzerland. Solid Earth. 2015;6:533–52. https://doi.org/10.5194/se-6-533-2015.
Article
Google Scholar
Hergert T, Heidbach O. Geomechanical model of the Marmara Sea region-II. 3-D contemporary background stress field. Geophys J Int. 2011;185:1090–102. https://doi.org/10.1111/j.1365-246X.2011.04992.x.
Article
Google Scholar
Hergert T. Numerical modelling of the absolute stress state in the Marmara region—a contribution to seismic hazard assessment, Dissertation, Universität Karlsruhe, 2009.
Hudson JA, Harrison JP. Rock masses. In: Hudson JA, Harrison JP. Engineering rock mechanics: an introduction to the principles. Amsterdam: Elsevier; 1997, 141–148, https://doi.org/10.1016/B978-008043864-1/50009-4.
Chapter
Google Scholar
Ingebritsen SE, Manning CE. Geological implications of a permeability-depth curve for the continental crust. Geol. 1999;27:1107. https://doi.org/10.1130/0091-7613(1999)027%3C1107:GIOAPD%3E2.3.CO;2.
Article
Google Scholar
Jarosiński M, Beekman F, Bada G, Cloetingh S. Redistribution of recent collision push and ridge push in Central Europe: insights from FEM modelling. Geophys J Int. 2006;167:860–80. https://doi.org/10.1111/j.1365-246X.2006.02979.x.
Article
Google Scholar
Kaiser A, Reicherter K, Huebscher C, Gajewski D, Marotta AM, Bayer U. Variation of the present-day stress field within the North German Basin; insights from thin shell FE modeling based on residual GPS velocities. Tectonophysics. 2005;397:55–72. https://doi.org/10.1016/j.tecto.2004.10.009.
Article
Google Scholar
Klee G, Rummel F. Hydrofrac stress data for the European HDR research project test site Soultz-Sous-Forets. Int J Rock Mech Min. 1993;30:973–6. https://doi.org/10.1016/0148-9062(93)90054-H.
Article
Google Scholar
Kley J, Franzke H-J, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H. Strain and stress. In: Littke R, Bayer U, Gajewski D, Nelskamp S, editors. Dynamics of complex intracontinental basins: The Central European basin system. Berlin: Springer; 2008. p. 97–124. https://doi.org/10.1007/978-3-540-85085-4_3.
Chapter
Google Scholar
Kley J, Voigt T. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology. 2008;36:839–42. https://doi.org/10.1130/G24930A.1.
Article
Google Scholar
Krawczyk CM, Rabbel W, Willert S, Hese F, Götze H-J, Gajewski D, SPP-Geophysics Group. Crustal structures and properties in the Central European Basin system from geophysical evidence. In: Littke R, Bayer U, Gajewski D, Nelskamp S, editors. Dynamics of complex intracontinental basins: The Central European basin system. Berlin: Springer; 2008. p. 67–95. https://doi.org/10.1007/978-3-540-85085-4_3.
Chapter
Google Scholar
Kroner U, Romer RL, Linnemann U. The Saxo-Thuringian Zone of the Variscan Orogen as part of Pangea. In: Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian active margin to the Variscan orogen, edited by: Linnemann, U. and Romer, R. L., Schweizerbart, Stuttgart, 3–16, 2010.
Levi N, Habermueller M, Exner U, Piani E, Wiesmayr G, Decker K. The stress field in the frontal part of the Eastern Alps (Austria) from borehole image log data. Tectonophysics. 2019;769: 228175. https://doi.org/10.1016/j.tecto.2019.228175.
Article
Google Scholar
Linnemann U, Romer RL. (Eds.): Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian active margin to the Variscan orogen, Schweizerbart, Stuttgart, 485 pp., 2010.
Litt T, Schmincke H-U, Frechen M, Schluchter C. Quaternary. In: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 1287–1340, https://doi.org/10.1144/CEV2P.8, 2008.
Mardia KV. Statistics of directional data probability and mathematical statistics. London: Academic Press; 1972. p. 380.
Google Scholar
Marotta AM, Bayer U, Thybo H, Scheck M. Origin of the regional stress in the North German Basin—results from numerical modelling. Tectonophysics. 2002;360:245–64. https://doi.org/10.1016/S0040-1951(02)00358-X.
Article
Google Scholar
Maystrenko Y, Bayer U, Scheck-Wenderoth M. The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics. 2005;397:113–26. https://doi.org/10.1016/j.tecto.2004.10.004.
Article
Google Scholar
Maystrenko YP, Scheck-Wenderoth M. 3D lithosphere-scale density model of the Central European Basin System and adjacent areas. Tectonophysics. 2013;601:53–77. https://doi.org/10.1016/j.tecto.2013.04.023.
Article
Google Scholar
McCann T. The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, The Geological Society of London, 1449 pp., 2008.
McCann T, Kiersnowski H, Krainer K, Vozarova A, Peryt TM, Oplustil S, Stollhofen H, Schneider J, Wetzel A, Boulvain F, Dusar M, Torok A, Haas J, Tait J, and Korner F. Permian. In: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 531–597, https://doi.org/10.1144/CEV1P.10, 2008.
Meixner J, Schill E, Gaucher E, Kohl T. Inferring the in situ stress regime in deep sediments: an example from the Bruchsal geothermal site. Geotherm Energy. 2014. https://doi.org/10.1186/s40517-014-0007-z.
Article
Google Scholar
Morawietz S, Reiter K. Stress Magnitude Database Germany v1.0, GFZ Data Services , https://doi.org/10.5880/wsm.2020.004, 2020.
Morawietz S, Heidbach O, Reiter K, Ziegler M, Rajabi M, Zimmermann G, Müller B, Tingay M. An open-access stress magnitude database for Germany and adjacent regions. Geothermal Energy. 2020. https://doi.org/10.1186/s40517-020-00178-5.
Article
Google Scholar
nagra: Sondierbohrung Benken: Technical Report NTB 00–01, nagra, 288 pp., 2001.
Pienkowski G, Schudack ME, Bosak P, Enay R, Feldman-Olszewska A, Golonka J, Gutowski J, Herngreen G, Jordan P, Krobicki M, Lathuiliere B, Leinfelder RR, Michalik J, Monnig E, Noe-Nygaard N, Palfy J, Pint A, Rasser MW, Reisdorf AG, Schmid DU, Schweigert G, Surlyk F, Wetzel A, Wong TE. Jurassic. In: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 823–922, https://doi.org/10.1144/CEV2P.2, 2008.
Przybycin AM, Scheck-Wenderoth M, Schneider M. Assessment of the isostatic state and the load distribution of the European Molasse Basin by means of lithospheric scale 3D structural and 3D gravity modelling. Int J Earth Sci. 2015;104:1405–24. https://doi.org/10.1007/s00531-014-1132-4.
Article
Google Scholar
Rajabi M, Tingay M, Heidbach O. The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production. Mar Petrol Geol. 2016;77:776–90. https://doi.org/10.1016/j.marpetgeo.2016.07.021.
Article
Google Scholar
Rasser MW, Harzhauser M, Anistratenko OY, Anistratenko VV, Bassi D, Belak M, Berger J-P, Bianchini G, Cicic S, Cosovic, V, Dolakova N, Drobne K, Filipescu S, Gürs K, Hladilova S, Hrvatovic H, Jelen B, Kasinski JR, Kovac M, Kralj P, Marjanac T, Marton E, Mietto P, Moro A, Nagymarosy A, Nebelsick JH, Nehyba S, Ogorelec B, Oszcypko N, Pavelic D, Pavlovec R, Pavsic J, Petrova P, Piwocki M, Poljak M, Pugliese N, Redzepovic R, Rifelj H, Roetzel R, Skaberne D, Sliva L, Standke G, Tunis G, Vass D, Wagreich M, Wesselingh F. Palaeogene and Neogene. In: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 1031–1139, https://doi.org/10.1144/CEV2P.5, 2008.
Reicherter K, Froitzheim N, Jarosinski M, Badura J, Franzke H-J, Hansen M, Hubscher C, Müller R, Poprawa P, Reinecker J, Stackebrandt W, Voigt T, Eynatten H von, Zuchiewicz W. Alpine tectonics north of the Alps, in: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann T. The Geological Society of London, 1233–1285, https://doi.org/10.1144/CEV2P.7, 2008.
Reiter K. Stress rotation—impact and interaction of rock stiffness and faults. Solid Earth. 2021;12:1287–307. https://doi.org/10.5194/se-12-1287-2021.
Article
Google Scholar
Reiter K, Heidbach O. 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth. 2014;5:1123–49. https://doi.org/10.5194/se-5-1123-2014.
Article
Google Scholar
Reyer D. Outcrop analogue studies of rocks from the Northwest German Basin for geothermal exploration and exploitation: Fault zone structure, heterogeneous rock properties, and application to reservoir conditions, PhD, 108 pp., 2013.
Röckel T, Lempp C. Der Spannungszustand im Norddeutschen Becken. Erdöl-Erdgas-Kohle. 2003;119:73–80.
Google Scholar
Roth F, Fleckenstein P. Stress orientations found in NE Germany differ from the West European trend. Terra Nova. 2001;13:289–96. https://doi.org/10.1046/j.1365-3121.2001.00357.x.
Article
Google Scholar
Scheck-Wenderoth M, Krzywiec P, Zuhlke R, Maystrenko Y, Froitzheim N. Permian to Cretaceous tectonics. In: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 999–1030, https://doi.org/10.1144/CEV2P.4, 2008.
Scheck-Wenderoth M, Lamarche J. Crustal memory and basin evolution in the Central European Basin System - new insights from a 3D structural model. Tectonophysics. 2005;397:143–65. https://doi.org/10.1016/j.tecto.2004.10.007.
Article
Google Scholar
Seithel R, Steiner U, Müller B, Hecht C, Kohl T. Local stress anomaly in the Bavarian Molasse Basin. Geotherm Energy. 2015. https://doi.org/10.1186/s40517-014-0023-z.
Article
Google Scholar
Sheorey PR. A theory for In Situ stresses in isotropic and transverseley isotropic rock. Int J Rock Mech Min. 1994;31:23–34. https://doi.org/10.1016/0148-9062(94)92312-4.
Article
Google Scholar
Simpson RW. Quantifying Anderson’s fault types. J Geophys Res. 1997;102:17909–19. https://doi.org/10.1029/97JB01274.
Article
Google Scholar
Sternai P, Sue C, Husson L, Serpelloni E, Becker TW, Willett SD, Faccenna C, Di Giulio A, Spada G, Jolivet L, Valla P, Petit C, Nocquet J-M, Walpersdorf A, Castelltort S. Present-day uplift of the European Alps: evaluating mechanisms and models of their relative contributions. Earth Sci Rev. 2019;190:589–604. https://doi.org/10.1016/j.earscirev.2019.01.005.
Article
Google Scholar
Stöckhert F, Brenne S, Molenda M, Bartmann K, Hoenig S, Alber M. Geomechanische Charakterisierung von Vulkaniten und Sedimenten des Rotliegenden im Norddeutschen Becken für die Optimierung des Aufschlusses geothermischer Lagerstätten, 19. Tagung für Ingenieurgeologie mit Forum für junge Ingenieurgeologen, München 2013, 2013.
Stollhofen H, Bachmann G, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D. Basin Fill - Upper Rotliegend to Early Cretaceous basin development, in: Dynamics of complex intracontinental basins: The Central European basin system, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer, Berlin, Heidelberg, 181–210, https://doi.org/10.1007/978-3-540-85085-4_4, 2008.
Stromeyer D, Heidbach O (2017) Tecplot 360 Add-on GeoStress. GFZ Data Services. https://doi.org/10.5880/wsm.2017.001
Stüwe, K.: Geodynamics of the Lithosphere, Springer Berlin Heidelberg, Berlin, Heidelberg, 493 pp., 2007.
Tašárová ZA, Fullea J, Bielik M, Środa P. Lithospheric structure of Central Europe: Puzzle pieces from Pannonian Basin to Trans-European Suture Zone resolved by geophysical-petrological modeling. Tectonics. 2016;35:722–53. https://doi.org/10.1002/2015TC003935.
Article
Google Scholar
Turcotte DL, Schubert G. Geodynamics. 3rd ed. Cambridge: Cambridge Univ Press; 2014. p. 623.
Book
Google Scholar
Urai JL, Schléder Z, Spiers CK, Kukla PA. Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S, editors. Dynamics of complex intracontinental basins: The Central European basin system. Berlin: Springer; 2008. p. 277–90.
Google Scholar
Valley B, Evans KF. Stress State at Soultz-Sous-Forêts to 5 km Depth from wellbore failure and hydraulic observations, in: Thirty-Second Workshop on Geothermal Reservoir Engineering, 22–24 January 2007, 2007.
Voigt S, Wagreich M, Surlyk F, Walaszczyk I, Ulicny D, Cech S, Voigt T, Wiese F, Wilmsen M, Niebuhr B, Reich M, Funk H, Michalik J, Jagt JW, Felder PJ, Schulf AS. Cretaceous, in: The Geology of Central Europe Volume 1: Precambrian and Palaeozoic; Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society of London, 923–997, https://doi.org/10.1144/CEV2P.3, 2008.
von Eynatten H, Kley J, Dunkl I, Hoffmann V-E, Simon A. Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs large-scale domal uplift. Solid Earth. 2021;12:935–58. https://doi.org/10.5194/se-12-935-2021.
Article
Google Scholar
Wenting L, Völkner E, Minkley W, Popp T. Zusammenstellung der Materialparameter für THM-Modellberechnungen - Ergebnisse aus dem Vorhaben KOSINA, BGR, Hannover, 88 pp., 2017.
Zang A, Stephansson O.: Stress Field of the Earth’s Crust, Springer Netherlands, Dordrecht, 322 pp., 2010.
Ziegler PA, Dèzes P. Crustal evolution of Western and Central Europe. Geol Soc London Memoirs. 2006;32:43–56. https://doi.org/10.1144/GSL.MEM.2006.032.01.03.
Article
Google Scholar
Ziegler MO, Heidbach O, Reinecker J, Przybycin AM, Scheck-Wenderoth M. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin. Solid Earth. 2016;7:1365–82. https://doi.org/10.5194/se-7-1365-2016.
Article
Google Scholar
Ziegler M, Heidbach O (2019a) Manual of the Matlab Script Stress2Grid v1.1. https://doi.org/10.5880/wsm.2019.002
Ziegler M, Heidbach O (2019b) Matlab Script Stress2Grid v1.1, GitHub [code]. https://doi.org/10.5880/wsm.2019.002
Ziegler MO, Ziebarth M, Reiter K et al. (2019) Python Script Apple PY v1.0. GFZ Data Services [code]. https://doi.org/10.5880/wsm.2019.001
Ziegler MO. Python Script HIPSTER v1.3, GFZ Data Services [code], 2021. https://doi.org/10.5880/wsm.2021.001.
Zoback MD. Reservoir Geomechanics. Cambridge: Cambridge University Press; 2007.
Book
Google Scholar