Artemieva IM, Thybo H, Jakonsen K, Sorensen NK, Nielsen LSK. Heat production in granitic rocks: global analysis based on new data compilation GRANITE2017. Earth-Sci Rev. 2017;172:1–26.
Article
Google Scholar
Bachler D, Kohl T, Rybach L. Impact of graben-parallel faults on hydrothermal convection—Rhine Graben case study. Phys Chem Earth. 2003;28:431–41.
Article
Google Scholar
Baksi AK. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India. Chem Geol. 1995;121:73–90.
Article
Google Scholar
Baranov V. A new method for interpretation of aeromagnetic maps; pseudo-gravimetric anomalies. Geophysics. 1957;22:359–82.
Article
Google Scholar
Baranwal VC, Sharma SP. Integrated geophysical studies in East-Indian Geothermal Province. Pure Appl Geophys. 2006;163:29–227.
Article
Google Scholar
Behera L, Sain K, Reddy PR. Evidence of underplating from seismic and gravity studies in the Mahanadi delta eastern India and its tectonic significance. J Geophys Res Solid Earth. 2004;109:1–25.
Article
Google Scholar
Bhattacharya S, Chaudhary AK, Teixeira W. Mafic dykes at the southwestern margin of Eastern Ghats belt: evidence of rifting and collision. J Earth Syst Sci. 2010;119:815–23.
Article
Google Scholar
Bhattacharyya PK. Continous spectrum of the total magnetic field anomaly due to prismatic body. Geophysics. 1966;XXXI(1):97–121.
Article
Google Scholar
Bose S, Gupta S. Strain partitioning along the Mahanadi shear zone: implications for paleo-tectonics of the Eastern Ghats Province, India. J Asian Earth Sci. 2018;157:268–82.
Article
Google Scholar
Bose S, Das A, Samantaray S, Banerjee S, Gupta S. Late tectonic reorientation of lineaments and fabrics in the northern Eastern Ghats Province, India: evaluating the role of the Mahanadi Shear Zone. J Asian Earth Sci. 2020;201:104071.
Article
Google Scholar
Central Ground Water Board, Govt. of India. Ground water information booklet of Khurdha district. Orissa: Ministry of Water Resources; 2013a.
Google Scholar
Central Ground Water Board, Govt. of India. Ground water information booklet of Nayagarh District. Orissa: Ministry of Water Resources; 2013b.
Google Scholar
Chandrasekharam D, Chandrshekar V. Geochemistry of thermal springs of Orissa, India. GRC Transact. 2010;34:665–7.
Google Scholar
Chaudhuri B. Geological and mineral map of Orissa. Kolkata: Geological Survey of India; 2010.
Google Scholar
Chetty TRK. The Eastern Ghats Mobile Belt, India: a collage of Juxtaposed Terranes. Gondwana Res. 2001;4:319–28.
Article
Google Scholar
Cloetingh S, Burov E, Matenco L, Beekman F, Roure F, Ziegler PA. The moho in extensional tectonic settings: insights from thermo-mechanical models. Tectonophysics. 2013;609:558–604.
Article
Google Scholar
Dasgupta S, Bose S, Das K. Tectonic evolution of the Eastern Ghats Belt, India. Precambrian Res. 2013;227:247–58.
Article
Google Scholar
Elizondo ED, Atekwana EA, Atekwana EA, Tsokonombwe G, Davila DAL. Medium to low enthalpy geothermal reseroirs estimated from geothermometry and mixing models of hot springs along the Malawi Rift Zone. Geothermics. 2021;89:101963.
Article
Google Scholar
Fedorov LV, Grikurov GE, Kurinin RG, Masolov VN. Crustal structure of the Lambert Glacier area from geophysical data. In: Craddock C, editor. Antarctic geoscience, vol. 93. Madison: University of Wisconsin Press; 1982. p. 1–936.
Google Scholar
Frehner M, Schmalholz SM. Numerical simulations of parasitic folding in multilayers. J Struct Geol. 2006;28(9):97–106.
Article
Google Scholar
Friedmann SJ, Burbank DW. Rift basins and supradetachment basins: intracontinental extensional end-members. Basin Res. 1995;7:109–27.
Article
Google Scholar
Gogte BS, Ramana YV. Physical and elastic properties of some khondalites from the Estern Ghat Belt of Peninsular India. Can J Earth Sci. 1976;13(9):1333–42.
Article
Google Scholar
Guo L, Meng X, Chen Z, Li S, Zheng Y. Preferential filtering for gravity anomaly separation. Comput Geosci. 2013;51:247–54.
Article
Google Scholar
Gupta H, Roy S. Geothermal energy: an alternate resource for the 21st century. Amsterdam: Elsevier; 2007. p. 52–4.
Google Scholar
Hasterok D, Webb J. Research paper on the radiogenic heat production of igneous rocks. Geosci Front. 2017;8:919–40.
Article
Google Scholar
Hochstein MP. Crustal heat traMorgannsfer in the Taupo Volcaniz Zone (New Zealand): comparison with other volcanic arcs and explanatory heat source models. J Volcanol Geoth Res. 1995;68:117–51.
Article
Google Scholar
Hofmann J. Fragmente intragondwanischer Rifte als Werkzeug der Gondwana-Rekonstruktion—das Beispeil des Lambert-Mahanadi-Riftes (Ostantarktika-Peninsular Indien). Neues Jahrb Geol Palaeontol Abh. 1996;199:33–48.
Article
Google Scholar
Jain S. Total magnetic field reduction—the pole or equator? A model study. Can J Explor Geophys. 1988;24(2):185–92.
Google Scholar
Koptev A, Calais E, Burov E, Leroy S, Gerya T. Dual continental rift system generated by plume-lithosphere interaction. Nature Geoscienes. 2015;8:388–92.
Article
Google Scholar
Kumar PS, Menon R, Reddy GK. The role of radiogenic heat production in the thermaal evolution of a Proterozoic granulite-facies orogenic belt: eastern Ghats, Indian Shield. Earth Planet Sci Lett. 2007;254:39–54.
Article
Google Scholar
Laske G, Masters G, Ma Z, Pasyanos ME. Update on CRUST1.0—A 1-degree global model of Earth’s crust. Geophy Res Abstr. 2012;15:2013–658.
Google Scholar
Lisker F. The evolution of the geothermal gradient from Lambert Graben and Mahanadi Basin—a contribution to the Indo-Antarctic rift debate. Gondwana Res. 2004;7:363–73.
Article
Google Scholar
Lisker F, Fachmann S. Phanerozoic history of the Mahanadi region, India. J Geophys Res Solid Earth. 2001;106(B10):22027–50. https://doi.org/10.1029/2001jb000295.
Article
Google Scholar
Lysak SV. Terrestrial heat flow of continental rifts. Tectonophysics. 1987;143:31–41.
Article
Google Scholar
Lysak SV. Heat flow variation in continental rifts. Tectonophysics. 1992;208:309–23.
Article
Google Scholar
Mahalik N. Lithology and tectonothermal history of the Precambrian rocks of Orissa along the eastern coast of India. J SE Asian Earth Sci. 1996;14:209–19.
Article
Google Scholar
Maitra A, Singh A, Keesari T, Sharma SP, Gupta S. Elevated equilibrium geotherm in stable continental shield: evidence from integrated structural, hydrological, and electromagnetic studies on nonvolcanic hot springs in the Eastern Ghats Belt, India. J Geophys Res Solid Earth. 2020. https://doi.org/10.1029/2019JB017747.
Article
Google Scholar
Mandal A, Mohanty WK, Sharma SP. 3D Compact inversion of gravity data for chromite exploration—a case study from Tangarparha, Odisha, India, vol. 32. Houston: SEG International Exposition and 84th Annual Meeting; 2013. p. 2109–13.
Google Scholar
Mandal A, Basantaray AK, Chandroth A, Mishra U. Integrated geophysical investigation to map shallow surface alteration/fracture zones of Atri and Tarabalo hot springs, Odisha, India. Geothermics. 2019;77:24–33.
Article
Google Scholar
Mandal A, Athul C, Basantaray AK, Mishra U. Delineation of shallow structures in Madwara igneous complex, Bundelkhand Craton, India, using gravity-magnetic data: Implication of tectonic evolution and mineralization. J Earth Syst Sci. 2020;129:90.
Article
Google Scholar
McCarthy KT, Pichler T, Price RE. Geochemistry of Champgne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antillles. Chem Geol. 2005;224:55–68.
Article
Google Scholar
McKenzie D. Some remarks on the development of sedimentary basins. Earth Planet Sci Lett. 1978;40:25–32.
Article
Google Scholar
Mishra DC, Chandra Sekhar D, Venkata Raju DC, Vijaya Kumar V. Crustal structure based on gravity-magnetic modelling constrained from seismic studies under Lambert Rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship. Earth Planet Sci Lett. 1999;172:287–300.
Article
Google Scholar
Morgan P. Constraints on rift thermal processes from heat flow and uplift. Tectonophysics. 1983;94:277–98.
Article
Google Scholar
Njinju EA, Kolawole F, Atekwana EA, Stamps DS, Atekwana EA, Abdelsalam MG, Mickus KL. Terrestrial heat flow in the Malawi Rift Zone, East Aftric: implications for tectono-thermal inheritance in continental rift basin. J Volcanol Geotherm Res. 2019;387:106656.
Article
Google Scholar
Qureshy MN, Rao SDV, Bhatia SC, Aravamadhu PS, Subrahmanyam C. Gravity bases established in India by N.G.R.I. Part IV. Geophys Res Bull. 1973;2:136–52.
Google Scholar
Ramberg H. Evolution of drag folds. Geol Mag. 1963;100(2):97–106.
Article
Google Scholar
Rao GV, Rao RUM. Heat flow in Indian Gondwana basins and heat production of their basement rocks. Tectonophysics. 1983;91:105–17.
Article
Google Scholar
Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics. 1990;55:80–91.
Article
Google Scholar
Roest WR, Pilkington M. Identifying remanent magnetization effects in magnetic data. Geophysics. 1993;58:653–9.
Article
Google Scholar
Sarkar RK, Saha DK. A note on the lithosphere thickness and heat flow density of the Indian Craton from MAGSAT data. Acta Geophys. 2006;54:198–204.
Article
Google Scholar
Sharma RS. Lecture note in Earth Sciences: Cratons and fold belts of India. Berlin: Springer; 2009.
Google Scholar
Sircar A, Shah M, Sahajpal S, Vaidya D, Dhale S, Chaudhary A. Geothermal exploration in Gujarat: case study from Dholera. Geotherm Energy. 2015;3:22.
Article
Google Scholar
Smith WHF, Sandwell DT. Global seafloor topography from satellite altimetry and ship depth soundings. Science. 1997;277:1957–62.
Article
Google Scholar
Spector A, Grant FS. Statistical models for interpreting aeromagnetic data. Geophysics. 1970;35(2):293–302.
Article
Google Scholar
Spiess FN, Macdonald KC, Atwater T, Ballard R, Crranza A, Cordoba D, Cox C, Garcia VMD, Francheteau J, Guerreo J, Hawkins J, Haymon R, Hessler R, Juteau T, Kastner M, Larson R, Luyendyk B, Macdougall JD, Miller S, Normark W, Orcutt J, Rangin C. East Pacific Rise: hot springs and geophysical experiments. Science. 1980;207:4438.
Article
Google Scholar
Srivastava R, Basantaray AK, Mandal A. Improved compact inversion approach for 2D gravity data modelling using probabilistic bounds. Eur Assoc Geosci Eng. 2018. https://doi.org/10.3997/2214-4609.201801464.
Article
Google Scholar
Talwani M, Worzel JL, Landisman M. Rapid gravity computaions for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res. 1959;64:1.
Google Scholar
Thompson DT. EULDPH: a new technique for making depth estimates from magnetic data. Geophysics. 1982;47:31–7.
Article
Google Scholar
Veevers JJ, Tewari RC. Gondwana master basin of Peninsular India between Tethys and the interior of the Gondwanaland province of Pangea. Mem Geol Soc Am. 1995;187:1–73. https://doi.org/10.1130/0-8137-1187-8.1.
Article
Google Scholar
Won IJ, Bevis M. Computing gravitational and magnetic anomalies due to polygon: algorithms and Fortran subroutines. Geophysics. 1987;52(2):232–8.
Article
Google Scholar
Wood SH, Kaewsomwang P, Singharajwarapan S. Geologic framework of the Fang Hot springs area with emphasis on structure, hydrology and geothermal development, Chiang Mai Province, northern Thailand. Geotherm Energy. 2018;6:3. https://doi.org/10.1186/s40517-017-0087-7.
Article
Google Scholar
Yadav K, Sircar A. Geothermal energy provinces in India: a renewable heritage. Int J Geoheritage Parks. 2020. https://doi.org/10.1016/j.ijgeop.202012.002.
Article
Google Scholar
Yadav K, Sircar A. Modelling of earth’s geothermal subtle traps using gravity Euler deconvolution. Model Earth Syst Environ. 2021;7:2769–77.
Article
Google Scholar
Zimik HV, Farooq SH, Prusty P. Geochemical evaluation of thermal springs in Odisha, India. Environ Earth Sci. 2017;76:593.
Article
Google Scholar