Akono AT. Assessment of fracture properties and rate effects on fracture of materials by micro scratching: application to gas shale. Doctoral dissertation, Massachusetts Institute of Technology. 2013;69–76.
Akono AT, Kabir P. Microscopic fracture characterization of gas shale via scratch testing. Mech Res Commun. 2016;78:86–92.
Article
Google Scholar
Akono A-T, Ulm F-J. Scratch test model for the determination of fracture toughness. Eng Fract Mech. 2011;78:334–42. https://doi.org/10.1016/j.engfracmech.2010.09.017.
Article
Google Scholar
Akono A-T, Ulm F-J. Fracture scaling relations for scratch tests of axisymmetric shape. J Mech Phys Solids. 2012;60(3):379–90. https://doi.org/10.1016/j.jmps.2011.12.009.
Article
Google Scholar
Akono A-T, Ulm F-J. An improved technique for characterizing the fracture toughness via scratch test experiments. Wear. 2014;313:117–24. https://doi.org/10.1016/j.wear.2014.02.015.
Article
Google Scholar
Akono A-T, Randall NF, Ulm F-J. Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals. J Mater Res. 2012;27:485–93. https://doi.org/10.1557/jmr.2011.402.
Article
Google Scholar
Al-Shayea NA. Effect of testing methods and conditions on the elastic properties of limestone rock. Eng Geol. 2004;74:139–56. https://doi.org/10.1016/j.enggeo.2004.03.007.
Article
Google Scholar
Ante MA, Manjunath GL, Aminzadeh F, Jha B. Microscale laboratory studies for determining fracture directionality in tight sandstone and shale during hydraulic fracturing. In: Unconventional resources technology conference. 2018. https://doi.org/10.15530/URTEC-2018-2903021.
ASTM C1624-05. Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing. West Conshohocken: ASTM International; 2015. https://doi.org/10.1520/C1624-05R15.
Book
Google Scholar
Atkinson BK. Subcritical crack growth in geological materials. J Geophys Res. 1984;89(B6):4077–114. https://doi.org/10.1029/JB089iB06p04077.
Article
Google Scholar
Backers T, Stephansson O. ISRM suggested method for the determination of mode II fracture toughness. Rock Mech Rock Eng. 2012;45:1011–22. https://doi.org/10.1007/978-3-319-07713-0_4.
Article
Google Scholar
Brindley GW. Phyllosilicates. In: Mineralogy. Encyclopedia of Earth Science. Boston: Springer; 1981. https://doi.org/10.1007/0-387-30720-6_100.
Chapter
Google Scholar
Callahan OA. Interactions between chemical alteration, fracture mechanics, and fluid flow in hydrothermal systems. Ph.D. Dissertation, The University of Texas at Austin. 2018. http://hdl.handle.net/2152/68884.
Callahan OA, Eichhubl P, Davatzes NC. Mineral precipitation as a mechanism of fault core growth. J Struct Geol. 2020a. https://doi.org/10.1016/j.jsg.2020.104156.
Article
Google Scholar
Callahan OA, Eichhubl P, Olson JE, Davatzes NC. Experimental investigation of chemically aided fracture growth in silicified fault rocks. Geothermics. 2020b. https://doi.org/10.1016/j.geothermics.2019.101724.
Article
Google Scholar
Callahan OA, Eichhubl P, Olson JE, Davatzes NC. Fracture mechanical properties of damaged and hydrothermally altered rocks, Dixie Valley-Stillwater Fault Zone, Nevada, USA. J Geophys Res Solid Earth. 2019;124(4):4069–90. https://doi.org/10.1029/2018JB016708.
Article
Google Scholar
Campbell DA, Morris CW, Verity RV. Geothermal well stimulation experiments and evaluation. Soc Pet Eng. 1981. https://doi.org/10.2118/10316-MS.
Article
Google Scholar
Carpenter BM, Scuderi MM, Collettini C, Marone C. Frictional heterogeneities on carbonate-bearing normal faults: insights from the Monte Maggio Fault. Italy J Geophys Res Solid Earth. 2014;119(12):9062–76. https://doi.org/10.1002/2014JB011337.
Article
Google Scholar
Castle JW, Falta RW, Bruce D, Murdoch L, Brame SE, Brooks D. Fracture dissolution of carbonate rock: an innovative process for gas storage. US Department of Energy, DE-FC26-02NT41299. (2006) https://doi.org/10.2172/918425. Accessed 05 Dec 2020.
Chandler M, Meredith P, Crawford B. Experimental determination of the fracture toughness the Mancos shale, Utah. Geophys Res Abstr. 2013. https://doi.org/10.3997/2214-4609.20130286.
Article
Google Scholar
Chen S, Yue ZQ, Tham LG. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci. 2004;41:939–57. https://doi.org/10.1016/j.ijrmms.2004.03.002.
Article
Google Scholar
Cheng Y, Chen X. Characteristics of seismicity inside and outside the Salton Sea geothermal field. Bull Seismol Soc Am. 2018;108(4):1877–88. https://doi.org/10.1785/0120170311.
Article
Google Scholar
Coudyzer C, Poyol E, Bette P, Dagrain F. Measure of rock mechanical properties from scratching test. In: AAPG international conferences and exhibition. 2005
Dagrain F, Germay C. Fields applications for the scratching tests. In: The Eurock 2006: multiphysics coupling and long term behaviour in rock mechanics. CRC Press; 2006. p. 571–6.
Chapter
Google Scholar
Dagrain F, Richard T, Germay C. The rock strength device: a scratching apparatus to determine rock properties. In: The 7th national congress on theoretical and applied mechanics, NCTAM. 2006.
Dalamarinis P, Kelessidis VC, Chatzistamou V, Karydakis G, Chlaboutakis M. Analysis of water and geothermal-well shallow drilling data via drilling software allows for rock drillability assessment and drill bit performance. In: 3rd AMIREG international conference: assessing the footprint of resource utilization and hazardous waste management, Athens, Greece. 2009.
Deere DU. Geological considerations. In: Stagg KG, Zienkiewicz OC, editors. Rock mechanics in engineering practice. London: Wiley; 1968. p. 1–20.
Google Scholar
Detournay E, Defourny P. A phenomenological model for the drilling action of drag bits. Int J Rock Mech Min Sci Geomech Abstr. 1992;29:13–23. https://doi.org/10.1016/0148-9062(92)91041-3.
Article
Google Scholar
Diehl T, Kraft T, Kissling E, Wiemer S. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): fault reactivation and fluid interactions imaged by microseismicity. J Geophys Res Solid Earth. 2017;122(9):7272–90. https://doi.org/10.1002/2017jb014473.
Article
Google Scholar
Dotsey P, Deighton I. New approach to basin formation temperature modelling. First Break. 2012. https://doi.org/10.3997/1365-2397.30.12.65624.
Article
Google Scholar
Erdlac Jr RJ. A resource assessment of geothermal energy resources for converting deep gas wells in carbonate strata into geothermal extraction wells: a Permian Basin evaluation. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, EERE. (2006) https://doi.org/10.2172/893183. Accessed 17 June 2020.
Erdlac Jr RJ, Swift DB. Deep permeable strata geothermal energy (DPSGE): tapping giant heat reservoirs within deep sedimentary basins—an example from Permian Basin carbonate strata. GRC Trans. 2004;28:327–31.
Google Scholar
Ferrill DA, McGinnis RN, Morris AP, Smart KJ, Sickmann ZT, Bentz M, Lehrmann D, Evans MA. Control of mechanical stratigraphy on bed restricted jointing and normal faulting, eagle Ford Formation, south-central Texas. AAPG Bull. 2014;98:2477–506. https://doi.org/10.1306/08191414053.
Article
Google Scholar
Finnila A, Dershowitz W, Doe T, McLaren R. Hydro-shearing and hydraulic fracturing for enhanced geothermal systems in archetypical normal, strike-slip and thrust faulting terrains. GRC Trans. 2015;39:1–19.
Google Scholar
Galvis H, Becerra D, Slatt R. Lithofacies and stratigraphy of a complete Woodford Shale outcrop section in South Central Oklahoma: geologic considerations for the evaluation of unconventional shale reservoirs. Interpretation. 2018;6(1):SC15–27. https://doi.org/10.1190/INT-2017-0074.1.
Article
Google Scholar
Germay C, Richard T, Mappanyompa E, Lindsay C, Kitching D, Khaksar A. The continuous-scratch profile: a high-resolution strength log for geomechanical and petrophysical characterization of rocks. Soc Pet Eng. 2015;18(03):432–40.
Google Scholar
Germay C, Lhomme T, McPhee C, Daniels G. An objective review of non-destructive methods for the direct testing of strength on rock cores. American Rock Mechanics Association; 2018.
Google Scholar
Gholizadeh Doonechaly N, Rahman SS, Kotousov A. A new approach to hydraulic stimulation of geothermal reservoirs by roughness induced fracture opening. In: Bunger AP, McLennan J, Jeffrey R, editors. Effective and sustainable hydraulic fracturing. London: IntechOpen; 2013. p. 573–90. https://doi.org/10.5772/56447.
Chapter
Google Scholar
Gokceoglu C, Zorlu K. A fuzzy model to predict the uniaxial compressive strength and modulus of elasticity of problematic rocks. Eng Appl Artif Intell. 2004;17(1):61–72. https://doi.org/10.1016/j.engappai.2003.11.006.
Article
Google Scholar
Griffith AAVI. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond. 1921;221:163–98. https://doi.org/10.1098/rsta.1921.0006.
Article
Google Scholar
Gudmundsson A, Simmenes TH, Larsen B, Philipp SL. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. J Struct Geol. 2010;32(11):1643–55. https://doi.org/10.1016/j.jsg.2009.08.013.
Article
Google Scholar
Hantler A. Crushing index—Aitik. Technical report, no. 8HX286586.10, Pöyry Sweden AB. 2015.
Heap MJ, Kennedy BM, Pernin N, Jacquemard L, Baud P, Farquharson JI, et al. Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. J Volcanol Geotherm Res. 2015;295:26–42. https://doi.org/10.1016/j.jvolgeores.2015.02.012.
Article
Google Scholar
Kaplan U. Organic rankine cycle configurations. In: European Geothermal Congress, Unterhaching, Germany. 2007.
Kerr SD Jr, Thomson A. Origin of nodular and bedded anhydrite in permian shelf sediments, Texas and New Mexico. AAPG Bull. 1963. https://doi.org/10.1306/BC743B0B-16BE-11D7-8645000102C1865D.
Article
Google Scholar
Kolawole O, Ispas I. Interaction between hydraulic fractures and natural fractures: current status and prospective directions. J Pet Explor Prod Technol. 2020a;10:1613–34. https://doi.org/10.1007/s13202-019-00778-3.
Article
Google Scholar
Kolawole O, Ispas I. Evaluation of geomechanical properties via scratch tests: where are we and where do we go from here? SN Appl Sci. 2020b;2(10):1–14. https://doi.org/10.1007/s42452-020-03469-5.
Article
Google Scholar
Kolawole F, Johnston CS, Morgan CB, Chang JC, Marfurt KJ, Lockner DA, Reches Z, Carpenter BM. The susceptibility of Oklahoma’s basement to seismic reactivation. Nat Geosci. 2019;12:839–44. https://doi.org/10.1038/s41561-019-0440-5.
Article
Google Scholar
Kolawole O, Ispas I, Kolawole F, Germay C, McLennan JD. Scratch test characterization of heterogeneous rock mechanical properties with applications to enhanced geothermal systems. Mendeley Data. 2020. https://doi.org/10.17632/xwhnkzzdmm.4.
Kolawole O, Ispas I, Kumar M, Weber J, Zhao B. Time-lapse biogeomechanical modified properties of ultra-low permeability reservoirs. Rock Mech Rock Eng. 2021. https://doi.org/10.1007/s00603-021-02410-5.
Article
Google Scholar
Lamdos Santos JP, Rosa LG, Amaral PM. Temperature effects on mechanical behaviour of engineered stones. Constr Build Mater. 2011;25(1):171–4. https://doi.org/10.1016/j.conbuildmat.2010.06.042.
Article
Google Scholar
Laubach SE, Olson JE, Gross MR. Mechanical and fracture stratigraphy. AAPG Bull. 2009;93:1413–26. https://doi.org/10.1306/07270909094.
Article
Google Scholar
Lund JW, Toth AN. Direct utilization of geothermal energy 2020 worldwide review. Geothermics. 2020;90:101915. https://doi.org/10.1016/j.geothermics.2020.101915.
Article
Google Scholar
Majdi A, Rezaei M. Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural Comput Appl. 2013;23:381–9. https://doi.org/10.1007/s00521-012-0925-2.
Article
Google Scholar
McClure MW, Horne RN. An investigation of stimulation mechanisms in enhanced geothermal systems. Int J Rock Mech Min Sci. 2014;72:242–60. https://doi.org/10.1016/j.ijrmms.2014.07.011.
Article
Google Scholar
Meller C, Kohl T. The significance of hydrothermal alteration zones for the mechanical behavior of a geothermal reservoir. Geotherm Energy. 2014;2:12. https://doi.org/10.1186/s40517-014-0012-2.
Article
Google Scholar
Mitaim S, Dagrain F, Richard T, Detournay E, Drescher A. A novel apparatus to determine the rock strength parameters. In: The 9th national convention on civil engineering, Thailand. 2004.
Murphy HD, Lawton RG, Tester JW, Potter RM, Brown DW, Aamodt RL. Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing. Soc Pet Eng. 1977;17(04):317–26.
Article
Google Scholar
Nadimi S, Forbes B, Moore J, Podgorney R, McLennan JD. Utah FORGE: hydrogeothermal modeling of a granitic based discrete fracture network. Geothermics. 2020. https://doi.org/10.1016/j.geothermics.2020.101853.
Article
Google Scholar
Nataraj MS, et al. Preliminary geotechnical evaluation of deep borehole facilities for nuclear waste disposal in shales. In: Bennett RH, et al., editors. Microstructure of fine-grained sediments. Frontiers in sedimentary geology. New York: Springer; 1991. https://doi.org/10.1007/978-1-4612-4428-8_57.
Chapter
Google Scholar
Odedra A, Ohnaka M, Mochizuki H, Sammonds P. Temperature and pore pressure effects on the shear strength of granite in the brittle–plastic transition regime. Geophys Res Lett. 2001;28(15):3011–4. https://doi.org/10.1029/2001GL013321.
Article
Google Scholar
Palchik V. Influence of porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones. Rock Mech Rock Eng. 1999;32(4):303–9. https://doi.org/10.1007/s006030050050.
Article
Google Scholar
Palchik V. On the ratios between elastic modulus and uniaxial compressive strength of heterogeneous carbonate rocks. Rock Mech Rock Eng. 2011;44:121–8. https://doi.org/10.1007/s00603-010-0112-7.
Article
Google Scholar
Pine RJ, Batchelor AS. Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Min Sci Geomech Abstr. 1984;21:249–63. https://doi.org/10.1016/0148-9062(84)92681-0.
Article
Google Scholar
Quoilin S, Van Den Broek M, Declaye S, Dewallef P, Lemort V. Techno-economic survey of organic Rankine cycle (ORC) systems. Renew Sust Energy Rev. 2013;22:168–86. https://doi.org/10.1016/j.rser.2013.01.028.
Article
Google Scholar
Riahi A, Radakovic-Guzina Z, Damjanac B, Katsaga T. Three-dimensional numerical investigation of the effect of injection method on shear stimulation of enhanced geothermal reservoirs. American Rock Mechanics Association, ARMA-2015-869; 2015.
Richard T, Dagrain F, Poyol E, Detournay E. Rock strength determination from scratch tests. Eng Geol. 2012;147–148:91–100.
Article
Google Scholar
Ruppel SC, Jones RH, Breton CL, Kane JA. Preparation of maps depicting geothermal gradient and Precambrian structure in the Permian Basin. In: USGS Order no. 04CRSA0834 and Requisition no. 04CRPR01474. 2005.
Saemundsson, K, Axelsson G, Steingrímsson B. Geothermal systems in global perspective. Short course on exploration for geothermal resources, UNU GTP. 2009;11.
Saller A, Bierly L, Shafer D, Owens L. Contrasting styles of San Andres reservoirs: vacuum versus slaughter fields, Middle Permian, West Texas and Southeast New Mexico. In: AAPG annual convention and exhibition. 2012.
Schei G, Fjær E, Detournay E, Kenter CJ, Fuh GF, Zausa F. The scratch test: an attractive technique for determining strength and elastic properties of sedimentary rocks. Society of Petroleum Engineers. 2000.
Shao H, Hein P, Sachse A, Kolditz O. Geoenergy modeling II: shallow geothermal systems. Springer briefs in energy: computational modeling of energy systems. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-45057-5.
Book
Google Scholar
Sheng M, Xu Z, Wang X, Li P. Experimental study on hydro-shearing propagation of an embedded fracture in hot dry granite rock. GRC Trans. 2018;42.
Slatt RM, Abousleiman Y. Merging sequence stratigraphy and geomechanics for unconventional gas shales. Lead Edge. 2011;30:274–82. https://doi.org/10.1190/1.3567258.
Article
Google Scholar
Sonmez H, Tuncay E, Gokceoglu C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate. Int J Rock Mech Min Sci. 2004;41(5):717–29. https://doi.org/10.1016/j.ijrmms.2004.01.011.
Article
Google Scholar
Stober I, Bucher K. Enhanced-geothermal-systems, hot-dry-rock systems, deep-heat-mining. In: Geothermal energy. Berlin: Springer; 2013. https://doi.org/10.1007/978-3-642-13352-7_9.
Chapter
Google Scholar
Stueber AM, Saller AH, Ishida H. Origin, migration, and mixing of brines in the Permian Basin: geochemical evidence from the eastern Central Basin platform, Texas. AAPG Bull. 1998;82(9):1652–72.
Google Scholar
Suarez-Rivera R, Stenebråten J, Dagrain F. Continuous scratch testing on core allows effective calibration of log-derived mechanical properties for use in sanding prediction evaluation. Soc Pet Eng. 2002. https://doi.org/10.2118/78157-MS.
Article
Google Scholar
Sygała A, Bukowska M, Janoszek T. High temperature versus geomechanical parameters of selected rocks—the present state of research. J Sustain Min. 2013;12(4):45–51. https://doi.org/10.7424/jsm130407.
Article
Google Scholar
Tang CM. Permian Basin. Encyclopædia Britannica. 2015. https://www.britannica.com/place/Permian-Basin.
Tesei T, Collettini C, Carpenter BM, Viti C, Marone C. Frictional strength and healing behavior of phyllosilicate-rich faults. J Geophys Res. 2012;117:B09402. https://doi.org/10.1029/2012JB009204.
Article
Google Scholar
Tham LG, Cheung YK, Tang CA. Numerical simulation of the failure process of rocks. Tamkang J Sci Eng. 2001;4:239–52.
Google Scholar
Toth AN. Country update for Hungary. In: World Geothermal Congress, Reykjavik, Iceland. 2020.
Tullis J, Yund RA. Experimental deformation of dry Westerly granite. J Geophys Res. 1977;82(36):5705–18. https://doi.org/10.1029/JB082i036p05705.
Article
Google Scholar
Ulm F-J, James S. The scratch test for strength and fracture toughness determination of oil well cements cured at high temperature and pressure. Cem Concr Res. 2011;41:942–6. https://doi.org/10.1016/j.cemconres.2011.04.014.
Article
Google Scholar
Wang X, Ghassemi A. A 3D thermal-poroelastic model for naturally fractured geothermal reservoir stimulation. American Rock Mechanics Association; 2012.
Google Scholar
Wang F, Konietzky H, Herbst M. Influence of heterogeneity on thermo-mechanical behaviour of rocks. Comput Geotech. 2019. https://doi.org/10.1016/j.compgeo.2019.103184.
Article
Google Scholar
Wiemer S, Kraft T, Trutnevyte E, Roth P. “Good practice” guide for managing induced seismicity in deep geothermal energy projects in Switzerland. SED, Swiss Seismological Service at ETH Zürich. 2017. https://doi.org/10.3929/ethz-b-000254161.
Wong T-F. Effects of temperature and pressure on failure and post failure behaviour of Westerly granite. Mech Mater. 1982;1:13–7. https://doi.org/10.1016/0167-6636(82)90020-5.
Article
Google Scholar
Wu G, Wang Y, Swift G, Chen J. Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng. 2013;31:809–16. https://doi.org/10.1007/s10706-013-9614-x.
Article
Google Scholar
Wyering LD, Villeneuve MC, Wallis IC, Siratovich PA, Kennedy BM, Gravley DM, Cant JL. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res. 2014;288:76–93.
Article
Google Scholar
Yao W, Xu Y, Xia K, et al. Dynamic mode II fracture toughness of rocks subjected to confining pressure. Rock Mech Rock Eng. 2020;53:569–86. https://doi.org/10.1007/s00603-019-01929-y.
Article
Google Scholar
Yılmaz I, Sendır H. Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol. 2002;66:211–9. https://doi.org/10.1016/S0013-7952(02)00041-8.
Article
Google Scholar
Zbinden D, Rinaldi AP, Diehl T, Wiemer S. Hydromechanical modeling of fault reactivation in the St. Gallen deep geothermal project (Switzerland): poroelasticity or hydraulic connection? Geophys Res Lett. 2020. https://doi.org/10.1029/2019GL085201.
Article
Google Scholar
Zhang H, Huang Z, Zhang S, Yang Z, Mclennan JD. Improving heat extraction performance of an enhanced geothermal system utilizing cryogenic fracturing. Geothermics. 2020. https://doi.org/10.1016/j.geothermics.2020.101816.
Article
Google Scholar
Zhou Z, Jin Y, Zeng Y, Youn D. Experimental study of hydraulic fracturing in enhanced geothermal system. American Rock Mechanics Association; 2018.
Google Scholar
Ziegler MO, Heidbach O. The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin. Geotherm Energy. 2020;8:11. https://doi.org/10.1186/s40517-020-00162-z.
Article
Google Scholar
Zoback MD. Reservoir geomechanics. New York: Cambridge University Press; 2010.
Google Scholar