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Introduction
Bottom-hole temperature (BHT) measurements have largely been used for mapping sub-
surface temperatures for geothermal resource analysis across the United States (Black-
well and Richards 2010; Frone and Blackwell 2010; Stutz et al. 2012; Tester et al. 2006). 
BHT data are predominantly provided by oil and gas wells, where maximum tempera-
ture is usually reported at the final drilled depth. In 2010, Blackwell and Richards (2010) 
incorporated BHT data in northeastern United States with stratigraphic information 
(Childs 1985), and used a simple thermal conductivity model to generate surface heat 
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flux and temperature-at-depth maps. Jordan et al. (2016) conducted a thorough analy-
sis to explore the associated risks and potentials of prospective geothermal resources 
in the states of New York, Pennsylvania and West Virginia. Even though most geother-
mally active regions are located in the western United States (near Earth’s tectonic plate 
boundaries), Jordan et al. (2016) showed that the stored energy in the low-temperature 
geothermal regions in the northeast could be utilized for many direct-use applications. 
Although Snyder et al. (2017) illustrated that myriad industrial and residential direct-use 
applications of geothermal energy could result in reduction of electricity consumption, 
there are not many geothermal sites in northeastern states due to a high financial risk. 
Heat flux and temperature-at-depth are two most important geothermal parameters, 
which have extensively been investigated through physics-based models.

In the previous geothermal studies, the generalized thermal conductivity model has 
been adopted to compute the heat flow associated with BHT data points (Blackwell and 
Richards 2010; Cornell University 2015; Frone and Blackwell 2010; Jordan et  al. 2016; 
Stutz et al. 2012; Tester et al. 2006). To use this model, first the measured bottom-hole 
temperature is corrected (through various available correlations (Deming 1989)) and is 
used to calculate the temperature gradient through the following relation:

Next, the geological formation thickness and thermal conductivity values are approxi-
mated at each well location’s latitude and longitude mainly from Correlation of Strati-
graphic Units of North America (COSUNA) (Childs 1985). Then, average thermal 
conductivity is calculated between surface and the well’s depth (Stutz et al. 2012). Finally, 
the heat flux is calculated through the following equation:

The above formula is oversimplified and only represents the main theoretical frame-
work of the physics-based model, which is used in geothermal energy studies. Despite 
physics-based model’s long-time applicability, they all have some underlying assump-
tions that could result in uncertainties and, therefore, inaccurate predictions. Some of 
the assumptions are explained by (Stutz et al. 2012) and (Blackwell and Richards 2010). 
In particular, there is no easy-to-use method to independently measure the heat flux 
parameter; it is only approximated through the thermal conductivity model using the 
BHT data as shown in Eq. (2).

In addition to the geothermal energy industry, subsurface temperature is an extremely 
important parameter in the oil and gas industry (Bassam et al. 2010; Forrest et al. 2005; 
Khan and Raza, 1986; Moses, 1961). Characteristics of hydrocarbons are greatly depend-
ent on the temperature and they must be approximated to be used in reservoir and drill-
ing simulations. In practice, it is common to use geothermal gradient maps to obtain 
the geothermal gradient value at the desired location and then calculate the subsurface 
temperature at the depth of interest (Forrest et al. 2005; Khan and Raza, 1986).

Machine learning and geostatistics have been used in the variety of applications to 
help investors make more confident decisions. Due to the inaccessible nature of the 
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geothermal energy, there is a considerable amount of risk and uncertainty associated 
with the exploration (Witter et al. 2019), drilling (Lukawski et al. 2016) and production 
(Bloomquist et al. 2012). There are few comprehensive surveys that focused on analyz-
ing the associated risks to provide insights about the potential of developing geother-
mal sites (Jordan et al. 2016; Young et al. 2010). Machine learning has been an emerging 
technology that helped the geothermal energy field in the mentioned stages (Assouline 
et al. 2019; Beardsmore 2014; Faulds et al. 2020; Rezvanbehbahani et al. 2017; Shi et al. 
2021; Tut Haklidir and Haklidir 2020). In the next section, we briefly review the studies 
which applied machine learning successfully in the fields of geothermal exploration and 
drilling.

Exploration stage

Recent machine learning advancements in some of the closely related fields of geology 
and geoscience have tremendously helped the geothermal energy industry in the explo-
ration and drilling stages. For example, applications of machine learning in characteri-
zation of geomechanical properties (Keynejad 2018), automated fault detection and 
interpretation (Ma et al. 2018; Zhang et al. 2014), geophysical data inversion (Araya-Polo 
et al. 2018) and categorizing different lithofacies (Hall 2016). Perozzi et al. (Perozzi et al. 
2019) took it further and proposed machine learning schemes to accelerate geological 
interpretations (specifically from well-logs) and, consequently, reducing the geothermal 
exploration costs.

Rezvanbehbahani et al. (2017) proposed a machine learning approach to estimate the 
geothermal heat flux (GHF) in Greenland using the global GHF data provided by the 
International Heat Flow Commission (Gosnold and Panda 2002). For modeling, Gradi-
ent Boosted Regression Tree method was used with an average 15% relative error, RMSE 
and r2 of 0.14 and 0.75, respectively. In that study, even though the authors provided 
a preliminary map to annotate most favorable locations in Greenland in terms of geo-
thermal potential, however, wellbore bottom-hole temperature data were not utilized. 
In another effort, machine learning was used to map very shallow geothermal potential 
(Assouline et al. 2019). In shallow depths, geothermal energy can be a very good source 
to provide thermal energy for residential areas (Vieira et.al. 2017). Assouline et al. used 
Radom Forrest to predict three important thermal variables that are crucial in analyzing 
the geothermal potential of the region. These variables include (1) temperature gradient, 
(2) thermal conductivity, and 3) thermal diffusivity throughout Switzerland.

Another interesting study was conducted which primarily focused on developing 
a probabilistic modeling approach to identify the underlying risks in the field of geo-
thermal resource exploration and the application of machine learning in the geothermal 
energy industry (Beardsmore 2014). An open-source software was developed named 
“Obsidian” which is capable of joint inversion of numerous geophysical datasets with 
probabilistic outputs. This study had access to a rich dataset containing formation char-
acteristics, local temperature info and multiple case studies located in different regions 
of Australia. In addition to 3D temperature-at-depth maps, they were able to gener-
ate a 3D probabilistic map where each given point represents the probability of having 
granite rock type. The combination of the two mentioned maps was intended to directly 
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help investors choose the right depth, latitude and longitude with the highest success 
probability.

Drilling stage

After finding the prospective geothermally active regions, geothermal wells are drilled 
for production. Drilling stage can comprise up to 45% of the total cost of the geother-
mal project (Muhammad 2019). Machine learning has helped the industry to efficiently 
design this stage from different aspects. Drilling optimization considerations in geo-
thermal wells can be categorized into (1) reducing drilling time and (2) minimizing 
operational failures. This subject is shared between geothermal and oil and gas indus-
tries where drilling operations are remarkably similar. There are myriad studies where 
machine learning techniques have successfully addressed the mentioned issues and pro-
vided reliable solutions to optimize the drilling stage (Barbosa et al. 2019; Hegde et al. 
2020; Hegde and Gray 2017, 2018; Noshi and Schubert 2018). Recently, the Department 
of Energy has funded a project with the theme of application of deep machine learn-
ing to optimize drilling operations (specifically for geothermal wells) which was awarded 
to Oregon State University with collaboration with one more US university, one DOE 
National Laboratory, in addition to four geothermal and oil and gas companies from Ice-
land, US and Norway (DOE, 2019). In the first-year report of this study, the major effort 
was made around four primary tasks (well data gathering, feature engineering, data 
repository development, and preliminary machine learning model testing). It was mainly 
found that more extensive data from bit life cycle and bottom-hole assembly (BHA) 
are needed to improve the machine learning models. Finally, they compared different 
machine and deep learning models to predict important drilling parameters and it was 
found that Random Forrest model outperforms others as number of inputs increases. 
There was an extra effort to include the lithological information (mainly from mud log 
data) by dummy encoding and text embedding to, potentially, increase the accuracy 
(Carbonari et al. 2021).

In this study, we provide an alternative solution of using machine learning methods for 
predicting subsurface temperature using BHT data from more than 20,750 oil and gas 
wells in the northeastern United States. Furthermore, the physics-based and machine 
learning models are compared through an extra dataset containing vertical temperature 
profile of 58 wells in the state of West Virginia. Finally, we provide the geothermal gra-
dient map using the validated XGBoost model for the northeast region of the United 
States.

Case study
The Marcellus formation is one of the highest potential hydrocarbon prospects in the 
United States and is located throughout the northern Appalachian Basin. For several 
decades, thousands of wells have been drilled in this region which contain, at least one 
temperature measurement (usually at the final depth). For our analysis, we have used 
a dataset with raw and corrected BHT, surface temperature, well identification num-
ber (API), latitude, longitude, and geological setting information (including layer thick-
ness and conductivity) and many other information from 20,750 oil and gas wells in the 
northeast. This dataset (Cornell University 2015) has been developed and reported as 
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part of a DOE funded research grant led by Cornell University. In Fig. 1, we show the 
geospatial spread of the well locations (of the dataset). In the right plot, the scatter points 
are referred to 20,750 well locations of the main dataset and the shaded area depicts the 
region where temperature predictions are provided by our study. The left plot in Fig. 1 is 
a magnified view of the West Virginia state region where the blue points represent a new 
set of well locations where we had more than one temperature measurement for each 
well. In fact, for many wells, subsurface temperature measurements were available along 
hundreds of meters within the well. We primarily used this dataset for further verifica-
tion of our geothermal gradient predictions.

Dataset‑1 summary

In Table 1, a summary of important parameters (after outlier removal) is provided. We 
have used 55 features that are included in Table 1. Among the variables, the geological 
characteristics are included through the multiplication product of each formation con-
ductivity and thickness (6–55). This is consistent with the thermal conductivity theory 
(Eq. (2)). At each well’s latitude and longitude, there are up to 49 formation layers where 
each layer has specific thickness and conductivity.

Dataset‑2 summary

We also exclusively gathered data for additional 58 wells across the West Virginia region 
(annotated by blue points on Fig. 1). In this dataset, for each well, temperature profile 
is provided within a depth interval (with the mean and standard deviation of 1167 and 
511 m, respectively). We obtained this dataset from West Virginia Geological and Eco-
nomical Survey (West Virginia Geological and Economical Survey Website n.d.). The 
digitized data were available in the LAS file format where temperature measurements 
(along with other geological parameters) were reported at different depths. We primar-
ily used it for comparing our modeling results with those from the physics-based model. 
We refer to this source as the temperature-profile dataset throughout this paper. Among 

Fig. 1  Right plot represents the spread of oil and gas wells in the first dataset (containing 20,750 BHT 
data points). In the left plot, the locations of the 58 newly obtained wells (with full temperature profile) are 
annotated using the blue color
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the 58 wells, bottom-hole temperature points of 11 wells already exist in the first dataset 
(20,750 wells). The rest are new wells which have been used to compare the physics-
based model with the machine learning methods.

BHT correction methods

For BHT correction, the authors (Jordan et al. 2016) divided the Appalachian Basin into 
three regions (West Virginia, Pennsylvania Rome Trough and Allegheny Plateau) and 
developed exclusive correction correlations based on available information at each of 
these regions (for example, in Allegheny Plateau region, information about drilling fluids 
were accessible to the authors in contrast to the West Virginia section where drilling 
fluid data were not available). For each region, a small set of equilibrium well-log tem-
perature measurements were statistically evaluated and a new set of appropriate BHT 
corrections were proposed. In West Virginia region, a Generalized Least Square (GLS) 
regression model was fitted through Eq. (3). For Pennsylvania Rome Trough, no statisti-
cally significant relation was found with depth and therefore no adjustment was applied. 
Fortunately, for Allegheny Plateau, the drilling fluid data were available, and the correla-
tion equations were proposed for different fluids as shown below.

(3)�TWVA = −1.99+ 0.00652z, 305m < z < 2606m,

Table 1  Statistical summary of important parameters after outlier removal

Surface temperature Depth Corrected BHT Heat flow

Unit °C m °C mW/m2

Mean 12.4 1154 37 49

std 1.8 459 13.2 13.4

min 8.8 43 10.2 0.2

25% 10.6 868 28.9 41.57

50% 12.1 1129 34.5 47.91

75% 14.3 1358 42.8 55.26

max 15.6 6541 146.9 130.21

Variable number Name Unit Source Description Type

1 BHTCorr °C Well log report Corrected bottom-hole 
temperature

Label

2 LatDegree – Well log report Lat degree of the well’s 
location

Feature

3 LongDegree – Well log report Long degree of the well’s 
location

Feature

4 MeasureDepth M Well log report The depth where BHT is 
recorded

Feature

5 SurfTemp °C Annual average tempera-
ture

Surf temperature at the 
well’s location

Feature

6 to 55 KH W/(°K) Approximated from the 
data reported in Cor-
relation of Stratigraphic 
Units of North America 
(COSUNA)

Multiplication product of 
each geological layer’s 
thickness with its cor-
responding thermal 
conductivity

Feature
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Outlier removal approach

For preprocessing, we removed outliers (101 data points) using the common 3σ-rule 
method where data outside the three standard deviation are considered outliers 
(Lehmann 2013; Pukelsheim, 1994; Watanabe et al. 2019) using the heat flux parameter 
(Fig. 2).

The reported temperatures in the temperature-profile dataset are prone to errors and 
we were required to correct them. Even though there are myriad temperature-correc-
tion methods, we decided to use the correction methodology reported by (Jordan et al. 
2016) to be consistent with their method. This allowed us to compare our results to 
those reported by the physics-based model in (Jordan et al. 2016). Since all wells in the 
temperature-profile dataset are located in the West Virginia region, we decided to use 
Eq. (3).

Methodology
Machine learning models

In this section, we provide a thorough summary of the machine learning models that 
have been used in this study to estimate subsurface temperature and geothermal gradi-
ent. We decided to use multiple algorithms to train our regression models, including 
Deep Neural Networks (DNN), Ridge regression (R-reg) models and decision-tree-based 
models (e.g., XGBoost and Random Forest).

In this paper, we compare the results of four machine learning algorithms. These algo-
rithms are different in nature and it is extremely important to appropriately compare 
their accuracies and errors. For each algorithm, we primarily focused on developing 

(4)�TAlle. Pt. Air = 0.0104

(

(

10903 + z3
)0.33

− 1090

)

, Z < 2500m,

(5)�TAlle. Pt. Mud = 0.0155

(

(

16603 + z3
)0.33

− 1660

)

, Z < 4000m.

Fig. 2  Heat-flow histogram after outlier removal
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the best performing model. This not only applies to hyper-parameter tuning, but also 
to the data preprocessing. In particular, we standardized the input features for Ridge 
Regression and DNN. For XGBoost and Random Forest models, we did not observe 
any improvement after standardizing the features and, therefore, we did not decide to 
standardize the input features. The tunned hyper-parameters are reported in the GitHub 
repository (Shahdi and Lee 2021).

Figure  3 illustrates the developed machine learning pipeline which has been used 
for this study. In the data preprocessing section, outliers are removed, and features are 
scaled (for R-reg and DNN). Next, hyper-parameters related to each model are tuned 
using cross-validation. At the end, the final model is also evaluated using cross-valida-
tion. This process is repeated for all models.

Ridge regression

In our dataset, there are uncertainties (noise) associated with the BHT data potentially 
from temperature logging tools, and/or the BHT correction correlations, etc. We used 
Ridge regression as one of the candidate machine learning models. Despite its simplic-
ity, it is robust to overfitting (regulated by a penalty term known as L2 Regularization) 
(Hoerl and Kennard 1970). (Wyffels et al. 2008) showed how Ridge Regression is robust 
to noise and overfitting in reservoir computing and signal processing applications. In 
another study, it was shown how Ridge Regression can be a superior solution when the 
multi-collinearity problem between independent variables exists comparing to other 
complex models (Morgül Tumbaz and İpek 2021). Baruque et al. (Baruque et al. 2019) 
successfully used Ridge regression for a geothermal application where heat exchanger 

Fig. 3  Developed machine learning pipeline
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energy was predicted using time series readings of several sensors. The goal is to find the 
model’s parameters which minimize the objective function.

where hyper-parameter α is a positive number that specifies the trade-off between the 
ordinary least squares (OLS) and regularization terms. In our implementation, we ini-
tially standardized the inputs (with BHT targets) and then fed them into the hyper-
parameter tunning section. We used the grid-search method to search for the best alpha 
(shown in Table 2).

XGBoost and Random Forest

Ensemble modeling approach is a process where numerous base models are generated to 
estimate an outcome. The base models are independent and diverse and tend to decrease 
the generalization error of the prediction. This methodology exploits the wisdom of 
crowds to make an approximation. Even though there are multiple base models associ-
ated with an ensemble model, it behaves as a single predictor. Typically, a weighted aver-
age of all base models’ predictions will be reported as the final outcome (Vijay and Bala 
2014). Random forest and XGBoost are both ensemble models which have widely been 
used for regression and classification problems. Random Forest constructs multiple 
decision trees at the time of training and provides the average estimation of individual 
trees (Breiman 2001). Whereas in XGBoost, the estimators (trees) are sequentially added 
to the ensemble model to improve the accuracy by adding a base learner to correct the 
shortcomings of the already existing base models. In XGBoost, the shortcomings are 
determined by gradients (Li 2016). In this study, target imbalance problem is present 
within our dataset since ninety-sex percent of BHT data correspond to the shallower 
wells (< 2000 m) . On the other hand, the deeper wells contain valuable information with 
higher temperature values which should not be removed (or be considered as outliers). 
We mainly used ensemble-based algorithms including Random Forest (Liaw and Wiener 
2002) and XGBoost (Chen and Guestrin 2016) because they are believed to work rela-
tively well in a case where target imbalance exists (Moniz et al. 2017). In addition, tree-
based models usually improve the accuracy by decreasing the variance in the prediction 

(6)θ̂ ridge = argmin
θ

(

y− X�2
2 + α�2

2

)

,

Table 2  Information about hyper-parameters related to Ridge-regression, Random Forest and 
XGBoost models

Model Hyper-parameter Range Optimum

Ridge-Reg Alpha [0.001, 100] 0.01

Random Forest Max_depth {5,8,10,12,15} 12

Random Forest N_estimators {100,500,1000} 500

Random Forest Min_samples_leaf {1,2} 2

Random Forest Min_samples_split {2,3} 2

XGBoost Max_depth {5,8,10,12} 8

XGBoost N_estimators {100,500,1000} 500

XGBoost Learning_rate {0.01,0.05,0.1,0.2} 0.05

XGBoost Gamma {0.1,1,10} 10

XGBoost Reg_lambda {0.1,1,10} 10
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(Polikar 2012). XGBoost and Random Forest are both tree-based methods which have 
been successfully applied in geosciences (Gul et al. 2019; Hall 2016; Sun et al. 2020). Sin-
gle decision tree is often referred to as a weak classifier as it can be susceptible to over-
fitting (Ho 1998). Random Forest builds an ensemble of multiple decision trees (weak 
classifiers) in parallel and takes the mean of the predictors for the prediction. Further-
more, during the ensemble construction, random features or columns are dropped while 
learning every decision tree, so that every tree is de-correlated from other trees as much 
as possible. XGBoost, on the other hand, builds decision trees in a sequential manner. 
XGBoost keeps adding decision trees at every step, making a fine separation in space to 
predict the response variable (Chen and Guestrin 2016). Every new step considers the 
previous steps which result in accuracy improvement after each iteration. XGBoost is a 
library that allows XGBoost to be run in parallel in terms of computing.

Deep neural network (DNN)

DNN is a network of connected processing elements (neurons) which are placed in 
multiple layers and is used to solve classification and regression problems. This is done 
through a learning process where the model parameters get adjusted in the train-
ing phase. In the training stage, the errors are propagated back in the network result-
ing in updating the model parameters (weights). This process continues till no further 
improvement is observed in the errors (Maind and Wankar 2014). We developed a deep 
neural network (DNN) architecture to predict the subsurface temperature. In our fea-
tures, we include the thermal conductivity and thickness values of up to 55 formation 
layers for each well. In this relatively large feature dimension, we decided to use DNN 
to capture the non-linearity between these geological characteristics and bottom-hole 
temperatures. Bassam et al. (Bassam et al. 2010) was among the first studies that evalu-
ated the application of a shallow artificial neural networks (ANN) in formation tempera-
tures in geothermal wells. In that study, collected BHT logs (during long-shut-in times) 
have been used for training and validation. Kalogirou et al. (Kalogirou et al. 2012) gener-
ated ground temperature map at shallow depths by considering land configuration using 
ANN.

Deep neural networks attempt to capture the relationships between inputs and outputs 
using a deep assembly of hidden layers of neurons, where every neuron in a hidden layer 
receives signals (or activations) from neurons in the previous layer, and transmits activa-
tions to all neurons in the subsequent layer. DNN models can capture high amounts of 
non-linearity using a large (or deep) number of inter-connected hidden layers. We tried 
different DNN architectures and finally picked a four-layer DNN as illustrated in Fig. 4. 
In the input layer, the number of nodes is the same as feature numbers followed by two 
hidden layers where each layer contains 50 nodes. Arrows correspond to connections 
among nodes and are associated with learnable edge weights. In addition, we selected 
ReLU activation function in our architecture. For the last neuron at the output layer, the 
weighted responses from the neurons at the second hidden layer are fed into a linear 
activation function and the final prediction for temperature is obtained. In Fig. 5, one 
neuron of the hidden layer is illustrated with the given inputs.

In Table  2, we included the values that are used for hyper-parameter tuning for 
Ridge-Regression, Random Forest and XGBoost. For DNN, we did not perform 
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hyper-parameter tuning in the same fashion (mainly due to the computational time). We 
examined tens of different architectures and reached to one illustrated above.

Feature space interpolation
Temperature-at-depth maps have extensively been used in geothermal energy studies to 
illustrate the temperature distribution at a given depth. In this study, we also provide 
temperature-at-depth maps at different depths in the northeastern United States. This 
allows investors to have another source of temperature prediction map for any potential 
future development. In addition, the new machine learning temperature maps can be 
compared to those from the thermal conductivity model to locate the similarities and 
differences. A simple concave hull algorithm was used to obtain a tight boundary around 
the given data points. To avoid sharp edges, we derived average values for the boundary 

Fig. 4  Deep neural network architecture for subsurface temperature prediction

Fig. 5  Single neuron illustration
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points and then implemented the algorithm (shaded area in Fig. 1). We initially used an 
online source code (Dwyer n.d.) and made major modifications to meet our project’s 
needs.

For constructing the subsurface temperature prediction map, the features should be 
available within different locations (with varying latitude and longitude). Therefore, 
we interpolated the required features (shown in Table 1) throughout the northeastern 
region using a Gaussian kernel weighted k-nearest neighbor regression model. These 
interpolated features are then fed into the trained machine learning models to generate 
the predicted temperature-at-depth maps. We chose KNN regression method since it is 
simple and is expected to perform well in our region of interest due to high concentra-
tion of wells. We used cross-validation for hyper-parameter tuning of the KNN method 
(K = 3 and kernel width = 0.037) using 20,750 data points.

Results and discussion
We trained the proposed machine learning models using the main dataset and observed 
that even though only single temperature measurement points (at each well location) 
were used for training, the machine learning models successfully predicted underground 
temperatures. Among the machine learning models, XGBoost and Random Forest out-
performed other models and provided more accurate results. For further verifications, 
we compared the XGBoost, DNN and physics-based model’s predictions versus the sub-
surface temperatures obtained from 58 additional wells in the temperature-profile data-
set. This was important because unlike the main dataset, the temperature-profile dataset 
comprises temperature measurements within depth intervals. This allows us to investi-
gate the machine learning model predictions versus depth. Fortunately, the results show 
that machine learning models predictions were in close agreement with the measured 
data.

Temperature‑at‑depth result analysis

After training and tuning hyper-parameters, we evaluated the accuracy of each model 
using the test data for using cross-validation. As shown in Fig. 6 and Table 4, XGBoost 
and Random Forest perform the best among other machine learning models. Statisti-
cal hypothesis tests (t tests) were performed. The comparisons of XGBoost with Ridge 
and DNN suggest that there is sufficient evidence to reject the null hypothesis and the 
observed differences between XGboost and the other two models in the regression accu-
racy is likely due to the differences in the models. However, the result of the hypothesis 
test on XGBoost and Random Forest suggests that there is insufficient evidence to reject 
the null hypothesis. Table 3 summarizes the p values for the tests.

We then used the trained models to predict subsurface temperature at three dif-
ferent depths (Z = 1000, 2000, 3000meters) in the northeastern United States. In 
Fig. 7, temperature predictions are plotted using XGBoost models. For comparison 
purposes between the physics-based and machine learning subsurface temperature 
predictions, we used KNN method (k = 8 and width = 1 determined from cross-
validation) for temperature interpolation for the physics-based model. To be more 
elaborate, in the main dataset, at each well’s location, the predicted physics-based 
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underground temperatures were provided along the depth. We used this data and 
KNN interpolation method to approximate the physics-based values at different lati-
tudes, longitudes and depths.

Generalizability analysis

As discussed earlier, the target imbalance problem was present in our dataset since 
fewer data points were available for depths below 2000  m (or BHT larger than 
60  °C). We conducted an experiment to compare XGBoost accuracy for well-rep-
resented and underrepresented data points in a test set. In Fig. 8, average percent-
age error (APE) versus depth is plotted for the test set where well represented and 
underrepresented data are illustrated by different colors. Furthermore, Fig. 9 shows 
the target distributions of the same test set (with one-to-one match with data points 
in Fig. 8). Next, we compared the mean absolute percentage error (MAPE) for well-
represented and underrepresented test data and found both values to be remarkably 
similar (with less than 2% difference). Through this empirical analysis, we confirmed 
the generalizability of the XGBoost model.

Fig. 6  Accuracy comparison between four machine learning models

Table 3  P-values obtained from statistical hypothesis tests

P-value Ridge RF DNN

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

XGBoost 1.47E−07 0.0019 1.25E−10 0.3693 0.4024 0.2490 0.0004 0.0733 9.28E−05
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Temperature‑profile prediction

In our analysis, we decided to use the corrected temperature-profile dataset (described 
in "Drilling stage" Section) to evaluate XGBoost and DNN accuracies against the thermal 
conductivity model. Jordan et al. reported the predicted subsurface temperatures (from the 
physics-based model) across the depth for each well’s latitude and longitude in the main 
dataset. The size of the available predicted temperature data is 2075*500 where each well 
had 500 temperature prediction values at different depths. We used KNN regression model 

Fig. 7  Temperature map at three different depths using XGBoost model

Fig. 8  Average percentage error calculated using XGBoost predictions and true BHT values for 
well-represented and underrepresented test data. In this instance, MAPE of blue and orange points are 9.17 
and 10.05%, respectively
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(using the mentioned data) to interpolate temperature-profile predictions for the phys-
ics-based model at the new locations (in the temperature-profile dataset). In the follow-
ing schematic, we illustrate the procedure that we have used to compare predictions from 
machine learning and the physics-based models.

After analyzing the results, the mean absolute errors of XGBoost, DNN, and physics-
based models were calculated to be 7.3, 7.27, and 8.76, respectively, for the 58 wells. These 
numbers show that machine learning models can be comparable, in terms of accuracy, to 
the physics-based thermal conductivity model. It is important to note that we have used 
multiple interpolations to be able to perform such comparison (Fig. 10). Therefore, there is 
some level of uncertainties associated with the reported numbers.

For illustration purposes, we include six temperature-profile predictions (in Fig.  11), 
which are fair representatives of the remaining cases. Among all plots, we could see that 
the thermal conductivity model performs relatively better in tracking the true temperature 
data in 11.3 and 11.4. On the other hand, both XGBoost and DNN models provide more 
accurate results in 11.1 and 11.6. Nevertheless, there are some cases where all models fail 
to follow the actual data. For example, in plot 11.2, we could see that neither physics-based 
nor machine learning models predict the temperature profile accurately. Temperature-pro-
file prediction plots of other wells are included in our GitHub repository (Shahdi and Lee 
2021). Among machine learning predictions, DNN and XGBoost predictions follow very 
similar trends even though DNN curves are smoother and have less variation with depth. 
This is expected because decision-tree-based models tend to show such discrete predictive 
behavior when used for regression.

In Tables 4 and 5, we include each well’s API well identification number with the distance 
from the closest well in the main dataset. The shown plots are from the wells that are close 
to at least one of the wells in the main dataset. This is important because it shows that the 
interpolated temperature values for the physics-based predictions are reliable and close to 
those reported by the original study (Jordan et al. 2016).

Fig. 9  Target (BHT) distributions for well-represented and underrepresented test data
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Geothermal gradient map

It is very popular to use geothermal gradient maps to predict the subsurface temperature 
at the desired location. In this study, we provide the geothermal gradient map for the 
northeastern United States.

Similar to the plots (shown in Fig. 11), we generate temperature-profile predictions for 
28,000 locations across the region and then fit a linear regression line to the tempera-
ture data for each location. These 28,000 wells are defined symmetrically throughout the 
region of interest (bounded by the concave hull algorithm which is shown in Fig. 1). This 

Fig. 10  Followed procedure for comparing predictions from physics-based and machine learning models
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Fig. 11  Temperature-profile predictions using thermal conductivity, XGBoost and DNN models versus 
measured data. The units are ◦ C and m for temperature and depth, respectively

Table 4  Evaluations of machine learning models using the main dataset

XGBoost Random Forest Deep neural network Ridge regression

Root mean square error 4.94 ± 0.15 5.01 ± 0.17 5.08 ± 0.18 5.3 ± 0.21

Mean absolute error 3.21 ± 0.07 3.25 ± 0.08 3.39 ± 0.09 3.57 ± 0.1

Mean absolute
Percentage error

9.22 ± 0.16 9.32 ± 0.18 9.77 ± 0.33 10.38 ± 0.33

Table 5  Corresponding details about the wells that are shown in Fig.  11. Distance column is 
referred to the distance from the test well to the closest well in the main dataset

Plot # API well number Distance [km]

1 4,710,300,645 0.26

2 4,707,500,050 0.03

3 4,709,501,963 0.22

4 4,700,502,167 0.50

5 4,701,304,647 0.34

6 4,705,900,805 3.27
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was necessary for generating a continuous temperature gradient map. Through our anal-
ysis, we found that the fitted lines accurately represent the predicted temperatures with 
average R2 of 0.97. The reported slopes are equal to the associated geothermal gradients 
and are illustrated in Fig. 12. The second map in Fig. 12 is a snapshot of an interactive 
Folium map within our region of interest.

In Fig. 13, areas with predicted geothermal gradient higher than 27
◦C
km (obtained from 

Random Forest, XGBoost and DNN) are annotated. All three model predictions recom-
mend similar areas in West Virginia and New York states to have high values for temper-
ature gradient. We cautiously suggest these machine learning guided prospective regions 
for future geothermal developments.

Next, we calculated the mean absolute errors between the geothermal gradients pre-
dicted using different models (e.g., physics-based, XGBoost and DNN) and measured 
temperatures for the temperature-profile dataset (as shown in Table 6).

Conclusion
The goal of this paper is to highlight the importance and applicability of machine learn-
ing methods in producing reliable predictions of important geothermal parameters from 
the rich volumes of data available from geothermal sites. It is critical to understand that 
this paper does not claim to prove that machine learning models are ubiquitously supe-
rior to conventional physics-based models in geothermal energy research. In this study, 

Fig. 12  Geothermal gradient map using XGBoost model. The gradient has the unit of 
◦
C

km
.
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we explored the applicability of four machine learning models in predicting subsurface 
temperatures in northeastern United States using bottom-hole temperature data and 
geological information from 20,750 wells. It was shown that XGBoost and Random For-
est outperformed all other models, with only 3.21 ◦C and 3.25 ◦C mean absolute error. 
Furthermore, we compared the predictions from machine learning and physics-based 
models to the measured temperature data obtained from an extra dataset with 58 wells 
in the state of West Virginia and showed that XGBoost can successfully predict the 
temperature at different depths. Lastly, we provided a geothermal gradient map for the 
corresponding region which can be used as a quick tool to calculate the underground 
temperature at any desired location and depth. In the map, eastern West Virginia along 
with portions of southwestern New York state show the highest potential.

We believe that this study provides a complementary analysis for geothermal energy 
exploration for future investments. Furthermore, oil and gas industry can benefit tre-
mendously from this paper too. The presented machine learning models can be incor-
porated in reservoir and drilling simulators for more accurate subsurface temperature 
predictions, and consequently, more reliable fluid properties characterization.

Fig. 13  Regions with subsurface temperature gradient higher than 27 
◦
C

km
 for XGBoost, Random Forest and 

DNN

Table 6  Average mean absolute errors and standard deviations (with unit of 
◦
C

km
 for physics-based, 

XGBoost and DNN model predictions compared to the measured temperature data

Model MAE

Physics 6.6

XGBoost 5.6

DNN 7.0
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