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Introduction
Crustal permeability is a key parameter in hydrothermal process models used in explo-
ration and development of geothermal systems. Permeability is, however, highly variable 
in space (Caine et al. 1996; Caine and Forster 1999; Fairley et al. 2003; Fairley and Hinds 
2004; Sanderson and Zhang 2004) and this complicates characterization of subsurface 
hydrothermal processes. Accordingly, it is common in developed geothermal systems to 
produce fluid from a few, relatively small (sub-meter- to meter-long) intervals of a bore-
hole that may be 100 s or 1000 s of meters in total length (based on Nevada Division 
of Minerals, publicly available data http://​www.​nbmg.​unr.​edu/​Geoth​ermal/​Produ​ction​
Injec​tion/​index.​html). This compartmentalization of hydrothermal processes means that 

Abstract 

In this paper, we present an analysis using unsupervised machine learning (ML) to 
identify the key geologic factors that contribute to the geothermal production in Brady 
geothermal field. Brady is a hydrothermal system in northwestern Nevada that sup-
ports both electricity production and direct use of hydrothermal fluids. Transmissive 
fluid-flow pathways are relatively rare in the subsurface, but are critical components 
of hydrothermal systems like Brady and many other types of fluid-flow systems in 
fractured rock. Here, we analyze geologic data with ML methods to unravel the local 
geologic controls on these pathways. The ML method, non-negative matrix factoriza-
tion with k-means clustering (NMFk), is applied to a library of 14 3D geologic charac-
teristics hypothesized to control hydrothermal circulation in the Brady geothermal 
field. Our results indicate that macro-scale faults and a local step-over in the fault 
system preferentially occur along production wells when compared to injection wells 
and non-productive wells. We infer that these are the key geologic characteristics that 
control the through-going hydrothermal transmission pathways at Brady. Our results 
demonstrate: (1) the specific geologic controls on the Brady hydrothermal system and 
(2) the efficacy of pairing ML techniques with 3D geologic characterization to enhance 
the understanding of subsurface processes.
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the volume of rock that transmits fluids at rates suitable for power production or direct 
use is much smaller than the volume of rock that does not transmit fluid (or transmits at 
sub-commercial rates or temperature). This presents a significant challenge to efficient 
exploration, development, and management of these renewable energy resources.

Compartmentalization of the fluid-flow system may be associated with a variety of 
geologic characteristics. For instance, spatial changes in fracture permeability through-
out a fault network, and/or permeability variation in the stratigraphic succession may 
control compartmentalization. The purpose and innovation of this study is to reveal the 
geologic factors that influence the compartmentalization of fluid flow this hydrothermal 
system. We evaluate three-dimensional (3D) geologic characteristics through an unsu-
pervised machine learning (ML) method called non-negative matrix factorization with 
k-means clustering (NMFk). Specifically, NMFk is applied to a suite of geologic factors 
that have been calculated along production, injection, and non-productive wells at Brady 
geothermal field in northwestern Nevada. The ML results indicate that the macro-scale 
faults and the ~ km-scale step-over in the fault system are closely spatially associated 
with production wells relative to injection wells and non-productive wells. Mapping the 
3D distribution of these factors in geothermal prospects, developed geothermal fields, 
and other types of fluid-flow systems may help promote more efficient resource develop-
ment and management.

Background
The Brady geothermal system

Brady geothermal field is located ~ 80  km northwest of Reno, Nevada, USA (Fig.  1). 
Brady has seen geothermal electricity production since 1992 and research or exploration 
since at least 1959 (Benoit and Butler 1983). The hydrothermal system supplies hot fluid 
to two power stations and a direct-use vegetable drying facility. Electricity production 
capacity at Brady is 26.1 MWe, and ~ 7 MWth is delivered to the drying facility (Ayling 
2020). Fluids are produced from two levels in the subsurface ~ 300–600  m depth and 
~ 1750  m depth. Temperatures of produced fluid have been ~ 130–185  °C during this 
time (Benoit 2014, and based on Nevada Division of Minerals, publicly available data 
http://​www.​nbmg.​unr.​edu/​Geoth​ermal/​Produ​ction​Injec​tion/​index.​html), though tem-
peratures as high as 219 °C have been measured (Shevenell et al. 2012). These relatively 
high temperatures occur at relatively shallow levels (as shallow as 300–600  m depth 
for some production wells) as a result of convective upwelling driven by temperature-
related differences in fluid density, and/or hydraulic head driven fluid-flow through hot 
rock (advection). In either case, relatively high heat flow in the Basin and Range physio-
graphic province, which is associated with Miocene-to-recent crustal thinning (Lachen-
bruch and Sass 1977; Blackwell 1983) provides the heat. The fluids circulate through 
transmissive pathways in the rock. At Brady, these have been primarily attributed to a 
network of fractures within a step-over in the Basin and Range-type normal fault (e.g., 
Wernicke 1992; Colgan et al. 2006) called the Brady fault (Faulds et al. 2003, 2010a, b, 
2017; Siler et al. 2018; Siler and Pepin 2021; Fig. 1). The production well field; an ellipti-
cal, ~ 3 km wide × 6 km long (across strike × along strike, relative to the north-northeast 
fault strike) temperature anomaly; surface geothermal features include active fuma-
roles, silica sinter, silicified sediments, and warm ground (Kratt et al. 2006; Lechler and 
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Coolbaugh 2007; Faulds et al. 2010a, b, 2017); and diffuse degassing of anomalous CO2, 
H2S, and Rn are also centered on the Brady step-over (Jolie et al. 2015a, b, 2016).

The stratigraphic section at Brady consists of metamorphic basement rocks at 
~ 1400 m and deeper in the well field, overlain by Oligocene-to-Late Miocene volcanic 
rocks from ~ 1400 to ~ 300 m depth, and Late Miocene-to-Holocene sedimentary rocks 
from ~ 300 m depth to the surface. The Brady fault is a west-dipping, north-northeast-
striking system of normal faults that cuts this stratigraphic section (Fig.  1). The step-
over of the Brady fault zone (Faulds et  al. 2010a, b, 2017; Siler and Faulds 2013; Siler 

Fig. 1  Map of Brady geothermal area. The fault strands that constitute the Brady fault (data from Faulds 
et al. 2017) are shown in yellow. Contours represent modeled temperature, a linear interpolation of the 
temperature data at 750 m depth. These are the same data as the modeltemp variable. Wells are colored 
by their usage (production, injection, and non-productive) for depths shallower than 750 m. The general 
geometry of the step-over is shown to the left of the fault system. Interstate 80 (orange line) is shown for 
reference
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et al. 2016) is an area where parallel but non-collinear strands come together (e.g., Pea-
cock and Sanderson 1991, 1994; Fossen and Rotevatn 2016). The southern segment of 
the Brady fault zone steps to the left to meet the northern segment (Fig. 1; Faulds et al. 
2017). Production wells are located in the step-over, injection wells are both in the step-
over and ~ 1.5 km away, at the north-northeast extent of the thermal anomaly (Fig. 1).

Methods
An existing 3D geologic map of Brady, synthesizing geologic map, downhole lithologic 
and structural data from well cuttings and core, and geophysical data (Siler and Faulds 
2013; Jolie et al. 2015b; Siler et al. 2016, 2021; Witter et al. 2016) was used to develop a 
suite of geologic variables that may control the distribution and localization of transmis-
sive pathways and production-grade hydrothermal fluid flow. The 14 different variables 
described below are calculated from the 3D geologic map and projected to 47 produc-
tion, injection, and non-productive wells within the field (Fig. 1).

Geothermal well data

The Brady well dataset is much denser at shallow levels than at deep levels (just eight of 
47 wells extend to ~ 1750 m, the deeper of the two geothermal reservoirs). The well data 
at deeper levels are too sparse to be used in the NMFk analysis. As a result, this analy-
sis focuses on the shallow (~ 300–600 m deep) reservoir, where the data are sufficiently 
dense for NMFk. 750 m is used as the cutoff depth to ensure that the full length of all 
wells that produce from the shallow reservoir is included in the dataset. There are nine 
production wells and six injection wells that have been used for production or injection 
at depths of less than 750 m since the geothermal power station was brought online in 
1992. Wells producing from the shallow reservoir account for ~ 57% of the total pro-
duced volume (June 1992–August 2019; based on publicly available data Nevada Divi-
sion of Minerals http://​www.​nbmg.​unr.​edu/​Geoth​ermal/​Produ​ction​Injec​tion/​index.​
html). We consider the remaining 32 wells to be non-productive wells. Four of these 
remaining 32 wells are used for production or injection; however, these wells produce or 
inject in the deeper reservoir. At depths less than 750 m they are not open to flow to or 
from the formation. These four deeper production wells are therefore considered “non-
productive” for our purposes. The other 28 wells have never been used for production 
or injection so we assume they have sub-commercial temperatures and/or flow rates. 
Each of the 14 geologic factors described below is calculated at 1-m intervals along all 
47 wells. The resultant database of 336,784 entries (24,056 locations with 14 variables) 
is used as input data for NMFk analysis. These are the input data for the NMFk analysis. 
Figure 2 shows the values for each of the 14 variables for one of the production wells.

Geothermal variables

Fault factors (faults, curve, td, ts, faultnear)

For each of the 32 faults defined by the 3D geologic map (Siler and Faulds 2013; Siler 
et  al. 2016, 2021; Witter et  al. 2016), a 30-m-wide fault zone is generated. This zone 
approximates the effective width of secondary faulting and fracturing around each fault. 
Though not constrained by field data, this width is consistent with empirically derived 
fault zone widths for km-long faults, like the Brady fault zone (Scholz et al. 1993; Anders 

http://www.nbmg.unr.edu/Geothermal/ProductionInjection/index.html
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and Wiltschko 1994). The fault variable has a value of ‘1’ where a well is located within 
a 30-m-wide fault zone and ‘0’ for well intervals not located within a fault zone. The 
curve variable is the along-strike and down-dip curvature calculated along each fault. 
The td and ts variables are the dilation tendency and slip tendency, respectively, for each 
fault. These values are calculated using methods of Morris et al. (1996) and Ferrill et al. 
(1999) and a local stress model calculated at Brady (Jolie et al. 2015b). The 30-m-wide 
fault zone for each fault is populated with the calculated curve, ts, and td values. The td, 
ts, and curve values are proxies for the occurrence of conductive fractures in each fault 
zone. Segments of faults with a high value for curve are postulated to be associated with 
accentuated faulting and fracturing as a result of stress loading at the highly curved fault 
segments (e.g., Sibson 1994), and may therefore preferentially host fluid flow. Dilation 
tendency (td) and slip tendency (ts) are the ratios of the resolved normal stresses and 

Fig. 2  The 14 variables used in this study along one of the Brady production wells. These are the input data 
for the NMFk algorithm. Cool colors correspond to low values and warm colors correspond to high values 
for each variable. For the binary variables (fault and goodlith), red corresponds to a value of one (a fault or 
the producing lithology), purple corresponds to a value of zero. For faultnear and contactnear warm colors 
indicate nearness to faults or contacts
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the ratio of normal stress to shear stress on faults, respectively. Fault segments that are 
either highly dilatant (high td) and/or stress loaded for slip (high ts) are likely to host 
fluid flow (Ferrill et al. 2019, 2020). For all wells, the faultnear variable is calculated as 
the difference between the distance to the nearest 3D mapped fault plane and the maxi-
mum distance to a fault in the dataset. This is done so that high faultnear values occur at 
intervals of wells that are near to faults (e.g., see Fig. 2), in the same way that high values 
for the other variables occur where hydrothermal processes are expected.

Fault network factors (faultdense, faultintdense)

Areas in the subsurface with especially dense faulting and fracturing are expected 
to have relatively high permeability, and thus host hydrothermal circulation. The spa-
tial density of fault planes (faultdense) and the spatial density of the lines of intersec-
tion between faults and the lines of termination of faults (faultintdense) are calculated as 
faults per unit volume and fault intersections or terminations per unit volume, respec-
tively (Alberti 2011;  Siler et  al. 2021). Fault intersections and terminations represent 
structural discontinuities, where stresses become concentrated and accentuated frac-
turing is expected (Peacock and Sanderson 1991; Fossen and Rotevatn 2016). Similarly, 
areas with many closely spaced faults are also expected to have a relatively high density 
of fractures, and either may host high permeability.

Stress and strain factors (dilation, normal, coulomb)

The step-over in the Brady fault is an important factor controlling the presence of hydro-
thermal circulation at Brady (Faulds et al. 2003, 2010a, b, 2016, 2017, 2018, 2021; Jolie 
et al. 2015a, b; Siler and Faulds 2013; Siler et al. 2016). Stress and strain become concen-
trated at the step-over when slip occurs on the Brady fault, and the location of the stress 
and strain perturbation is largely concomitant with the production well field and the 
local temperature anomaly (Siler et al. 2018). The 2D modeled dilation (dilation), normal 
stress reduction (i.e., unclamping of a fault) (normal) and coulomb shear stress increase 
(coulomb) as a result of 1 m normal slip on the Brady fault are calculated at 250-m-depth 
intervals from the surface to 750 m depth (Stein et al. 1992; King et al. 1994; Lin and 
Stein 2004). dilation, normal and coulomb values between the calculated depth slices are 
linearly interpolated, approximating the volumetric dilation, normal stress reduction, 
and Coulomb shear stress increase in the study area. The stress and strain perturbations 
that occur with fault slip result in zones of accentuated secondary faulting and fractur-
ing and may be important factors in localizing hydrothermal circulation in the step-over 
(Siler et al. 2018).

Stratigraphic factors (contactnear, unitthick, goodlith)

In addition to the above geologic and structural variables, permeability associated with 
stratigraphic factors may also play an important role in localizing hydrothermal circu-
lation. Stratigraphic contacts can be manifested as zones of breccia. These brecciated 
contact zones in successions of volcanic rocks, like those that occur at Brady, may have 
matrix porosity and permeability that are important aspects of the flow system. The 
distance from the nearest stratigraphic contact (contactnear) is calculated as the differ-
ence between the distance to the nearest stratigraphic contact along each well and the 
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maximum distance to a contact in the dataset. In this case, high values of contactnear 
would be expected to correlate with hydrothermal fluid flow. Alternatively, relatively 
thick geologic units, i.e., relatively large, intact volumes of rock distal to stratigraphic 
contacts, may focus strain on a relatively small number of dominant, high-aperture 
fractures. Areas with high values for the thickness of each stratigraphic unit (unitthick) 
from the 3D geologic map could be favorable for localizing hydrothermal circulation in 
this case. Though the 3D geologic map (Siler et al. 2021) contains simplified stratigra-
phy relative to the more detailed geologic map and cross-section published for the Brady 
area (Queen et  al. 2016; Faulds et  al. 2012, 2017), the stratigraphic contacts from the 
3D geologic map used to calculate contactnear and unitthick, represent major lithologic 
boundaries. It is probable that if there were a stratigraphic effect on the production 
zones, it would come from these boundaries between the major lithologic packages. The 
~ 300–600-m-depth production reservoir at Brady occurs in Miocene mafic to interme-
diate volcanic rocks. It is possible that these specific stratigraphic units have high matrix 
porosity and permeability and/or are favorable for developing highly transmissive frac-
ture systems when faulted relative to other lithologic units. The goodlith variable is ‘1’ for 
well intervals with these stratigraphic units and ‘0’ for intervals in other units.

Temperature (modeltemp)

Advection or convection is much more efficient means of heat transport than conduc-
tion. Higher temperatures, therefore, are expected within or near transmissive fluid-flow 
conduits. Equilibrated temperature logs from 39 deep (as deep as ~ 2 km) geothermal 
wells and 79 shallow (~ 150 m) temperature gradient wells (Shevenell et al. 2012) were 
used to build a 3D temperature model (Siler et  al. 2021). The modeled temperature 
(modeltemp) is projected to each of the 47 wells.

Machine learning methods: NMFk

Machine learning (ML) approaches are mainly classified as unsupervised or supervised; 
the difference being whether the algorithm is formally trained by using labeled data 
(supervised) or not trained (unsupervised). Both supervised and unsupervised meth-
ods have been employed to address geothermal-related concepts. Faulds et  al. (2020), 
applied supervised methods to regional-scale data to reveal hidden hydrothermal sys-
tems. Supervised methods have also been used to inform geothermal reservoir modeling 
(Gudmundsdottir and Horne 2020; Beckers et  al. 2021), predict loss circulation zones 
in wells (Kiran and Salehi 2020), and identify small-scale fractures in seismic reflection 
data (Zheng et al. 2021). Unsupervised ML has been applied to identify hidden geother-
mal signals in both regional-scale data (Vesselinov et al. 2020a, b; Ahmmed et al. 2020a, 
b, d) and local-scale data (Vesselinov et al. 2019; Ahmmed et al. 2020c; Siler and Pepin 
2021). Unsupervised learning was chosen for this study to infer the natural structure 
present within the dataset so that new information regarding the geologic controls on 
hydrothermal processes may readily be discovered.

The NMFk algorithm we employ combines two unsupervised machine learning (ML) 
methods, non-negative matrix factorization (NMF) and customized k-means clustering. 
NMF factorizes a non-negative data matrix, X, into two components W and H, where W 
is a location matrix and H is an attribute matrix.
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Given a non-negative data matrix X = [x1, . . . , xn] ∈ R
m×n , each column of X 

is a variable/sample vector, where m and n are the number of locations and attributes, 
respectively. NMF factorizes or decomposes X based on the user-specified number of 
dimensions k into W and H matrices by minimizing the following loss function (Lee and 
Seung 1999):

where � • �F denotes Frobenius norms. H can be considered as a basis matrix of X that is 
optimized for the linear approximation of X. Because only a few basis vectors represent 
all data vectors, good approximation vectors are those that capture the latent structure 
of X.

After completion of NMF process, 1000 estimated H are clustered into k clusters using 
k-means clustering that has been customized using blind source detection (Alexandrov 
and Vesselinov 2014). Because k is unknown in k-means clustering, the algorithm con-
secutively examines specified k by obtaining 1000 H for each feature/variable. During 
clustering, the similarity between two variables is assessed according to the cosine norm. 
After clustering, the Silhouette values (Rousseeuw 1987) are calculated and used to esti-
mate a particular choice of k. The Silhouette value quantifies how similar an object is to 
its own cluster compared to other clusters and varies from − 1 to + 1; positive values 
indicate that the object is well matched to its own cluster and poorly matched to neigh-
boring clusters. The combination of the least L and the highest Silhouette value is used 
to determine the optimal number of clusters, or hidden signals. If k is low, the Silhouette 
value will be high, but so may be L because of under-fitting (e.g., Lever et al. 2016). For 
high k, the Silhouette value will be low and the solution may be over-fit (e.g., Lever et al. 
2016). So, the best estimate for k is a number that optimizes both the L and Silhouette 
values.

Other existing matrix factorizations include singular value decomposition (SVD) 
(Klema and Laub 1980) and principal and independent component analyses (PCA and 
ICA) (Wold and Geladi 1987; Comon 1994; Ritchie and Pepin 2020; Siler and Pepin 
2021). There are a few advantages of NMFk over these other tools. For instance, NMFk 
handles both real and categorical variables and datasets with missing entries, yet still 
provides interpretable results (Alexandrov and Vesselinov 2014; Vesselinov et al. 2018). 
For geological applications of ML like this one, the ability to handle categorical data 
(e.g., the faults and goodlith variables) and datasets with missing entries is critical. These 
parameters may not be constrainable with numerical values in all locations of interest, 
yet still constitute an important part of the solution. In our case, the categorical faults 
variable is a key part of the solution. Our dataset does not have any missing entries, so 
this advantage of NMFk was not utilized in this study.

Results
As outlined in “Machine learning methods: NMFk” section, NMFk analysis reveals hid-
den associations within a dataset. In our case, these associations characterize interde-
pendencies among geologic attributes and production, injection, and non-productive 
well locations within the analyzed 3D domain. Results were calculated for k of values 

(1)L =

∥

∥

∥
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T
∥
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of 2, 4, 5, and 6. The 2-cluster result was under-fit. The 3-cluster result is rejected by the 
NMFk algorithm because of its low Silhouette value. The 4, 5, and 6 cluster results are 
all robust solutions based on their L and Silhouette values. Numbers of clusters larger 
than 6 were over-fit. For each of the 4, 5, and 6 cluster solutions the H matrices show 
similar weighting patterns between variables (Fig. 3). We chose to interpret the 4-cluster 
solution herein, since the smaller number of clusters is more easily interpretable in the 
framework of the geologic controls of hydrothermal fluid flow at Brady.

Figure 3A shows the 4-cluster H (attribute)-matrix. Below, we use ‘signal’ to refer 
to the H-matrix and W-matrix columns (S1, S2, S3, and S4). The signal weight for 
each factor is calculated by the NMFk algorithm. In addition to defining the four sig-
nals, the NMFk results define “cluster” for each well. Figure 4 shows the W (location)-
matrix, the four signals (S1, S2, S3, S4) relative to each of the 47 geothermal wells, 
and the cluster (A, B, C, or D) that is defined by the NMFk algorithm. Figure 4A, B is 
the same matrix, Fig. 4A is sorted by the cluster label, Fig. 4B is sorted by S2 value. 
For both Figs. 3 and 4, warm colors indicate a relatively high (strong) weight between 
the signal and the variable (Fig. 3) or the signal and the well (Fig. 4) and cool colors 
indicate a relatively low weight. Figure  5 shows the Brady well field and the cluster 

Fig. 3  H (attribute) matrix for 4-signals, 5-signals and 6-signals. The 4-signal solution, which is interpreted 
here, is highlighted. Warm colors indicate that the variable has a high weight with that particular signal; cool 
colors indicate that the variable has a low weight with that specific signal

(See figure on next page.)
Fig. 4  W (location) matrix. The four signals from the NMFk results relative to the 47 geothermal wells: A 
sorted by well clusters, B sorted by S2 values. Warm colors indicate that the variable has a high weight with 
that particular signal; cool colors indicate that the variable has a low weight with that particular signal. The 
well usage (production, injection or non-productive) and the well cluster labels (A, B, C, or D) are listed
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Fig. 4  (See legend on previous page.)
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that each well falls into. Figure 6 shows a biplot of S1 vs S2. These two signals most 
effectively separate the production wells from the injection and non-productive wells. 
On Fig. 6, the wells and variables are plotted by their S1 and S2 values from Figs. 3A, 
4, respectively. The production wells (red) have relatively high S2 values and relatively 
low S1 values. The variables (plotted as asterisks) that plot in the same quadrant, i.e., 
also have relatively high S2 values and relatively low S1 values, are those that most 

Fig. 5  Map of the Brady well field and fault system. Wells are shown by their use (production, injection, or 
non-productive) and their cluster (A, B, C, or D) as assigned by the NMFk results. Six of the nine production 
wells are in Cluster C (triangles). Cluster C is highlighted with a white halo
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effectively separate the production wells from the injection wells and non-productive 
wells (Fig. 6).

Discussion
The NMFk results show that six of the nine wells that have been used for geothermal pro-
duction at Brady from the shallow (~ 300–600  m depth) reservoir (June 1992–August 
2019) fall in cluster C (Figs. 4A and 5). Cluster C is associated with relatively high (red) S2 
values, and relatively low values (green) for S1, S3, and S4 (Fig. 4B). Additionally, all 9 of 
the production wells fall within the 17 highest S2 values (Fig. 4B). This further indicates 
that relatively high S2 values are strongly associated with production wells relative to the 
other wells. Additionally, the NMFk results indicate which fault factors, fault network fac-
tors, and stress and strain factors are more dominant in S2 (and therefore predominate 
along the production wells) relative to injection wells and non-productive wells.

Fault factors

The occurrence of faults intersecting a well, i.e., the faults variable, is the predominant 
faulting related factor associated with S2 (Figs. 3A and 6). This is evident in Fig. 6 on which 
faults plots in the upper left quadrant, with relatively high S2 and relatively low S1; a simi-
lar pattern is observed for the majority of the production wells. Though faultnear also has 
high S2 values, it also has relatively high values for S1, S3, and S4 (Fig. 3A), so it less dis-
tinctly related to S2 relative to faults. On Fig. 6 this is evident from faultnear plotting in the 
upper-right quadrant, farther to the right relative to the production wells. These results 
suggest that the presence or absence of distinct, macro-scale fault zones is strongly related 
to production wells, more so than the other fault factors such as nearness to faults (fault-
near), the curvature of faults (curve), slip tendency (td), or dilation tendency (ts).

Fault network factors

The 3D spatial density of fault planes (faultdense) is the predominant fault network fac-
tor related to S2 and the production wells (Figs. 3A and 6). This is evident in Fig. 6 on 

Fig. 6  Biplot of signal-1 (S1) vs signal-2 (S2). Production wells (red) are enclosed by the red dashed polygon. 
The production wells and the faults, dilation, and faultdense variables have relatively high S2 values and 
relatively low S1 values indicating that these variables control the separation of the production wells from the 
rest of the data set
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which faultdense plots in the upper left quadrant, with relatively high S2 and relatively 
low S1, similar to the majority of the production wells. Though faultindense has a high 
S2 value, it also has relatively high S1 and S3 values (Fig. 3A), and plots to the right of the 
production wells relative to faultdense. This indicates that fault density is more strongly 
related to production wells than fault intersection density.

Stress and strain factors

Dilation occurring as a result of modeled fault slip (dilation) is the predominant stress/
strain factor related to S2 and the production wells (Figs. 3A and 6). This is evident in 
Fig. 6 in which dilation plots in the upper left quadrant, with relatively high S2 and rela-
tively low S1, similar to the majority of the production wells. These results indicate that 
dilation is more strongly related to production wells relative to normal or coulomb, the 
other stress/strain network factors examined herein.

Stratigraphic factors

Overall, no stratigraphic factor is particularly strongly related to the production wells. 
Of the three stratigraphic factors, the thickness of geologic units (unitthick) has high S2 
values (Figs. 3A and 6) relative to the nearness to geologic contacts (contactnear), and 
the specific geologic units that are associated with geothermal production (goodlith). 
However, S1 values for unitthick are high relative to the production wells (unitthick plots 
in the upper right in Fig. 6), so unitthick appears to be less strongly related to the pro-
duction wells relative to dilation, faultdense, and faults.

Temperature

Temperature (modeltemp) has relatively low values for all signals. This suggests that the 
modeled temperature is not significantly higher or lower along any subset of wells rela-
tive to the other wells.

Geologic controls on hydrothermal processes at Brady

The NMFk results suggest that there are two dominant characteristics of the geologic 
structure that control hydrothermal processes at < 750 m depth at Brady: the distinct, 
macro-scale faults and the step-over in the Brady fault system. The macro-scale faults 
are those that are mappable in 3D using geologic and geophysical evidence (Siler et al. 
2021). Interestingly, this relatively simple fault variable, the binary occurrence or non-
occurrence of a 30-m-wide fault zone crossing a well (Fig. 2), is more closely related to 
the production wells than the static stress state of the faults (td or ts), the curvature of 
the faults (curve), or the nearness to the mapped fault planes (faultnear).

The step-over in the Brady fault (Fig. 1) is the other dominant geologic factor control-
ling hydrothermal processes at Brady. This concept is well established (Faulds et al. 2003, 
2010a, b, 2016, 2017; Kratt et al. 2006; Lechler and Coolbaugh 2007; Jolie et al. 2015a, b; 
Siler et al. 2018), but this study and a similar unsupervised machine learning study (Siler 
and Pepin 2021) directly link the 3D geologic attributes of the step-over to the produc-
tion wells and production intervals. The geometry and location of the step-over controls 
the spatial density of fault planes (faultdense) because faults are most dense in the step-
over (Fig. 1). The step-over also controls the dilatational strain that occurs as a result of 
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modeled fault slip on the Brady fault (dilation) (Siler et al. 2018). The NMFk results sug-
gest these two factors are more effective indicators of step-over’s control on hydrother-
mal processes relative to the other stress and strain variables (normal and coulomb) and 
the spatial density of fault intersections (faultintdense). A principal component analy-
sis (PCA) study conducted on a similar dataset but examining the entirety of the Brady 
production wells (rather than < 750  m depth as we do here) also indicate the macro-
scale faults and 3D density of faults are the dominant controls on geothermal produc-
tion zones (Siler and Pepin 2021). Interestingly, this study suggests that dilation is more 
strongly associated with geothermal production than coulomb stress change, whereas 
Siler and Pepin (2021) show the opposite. The magnitude of dilation occurring as a result 
normal fault slip is highest at shallow levels and decreases with depth. This may explain 
why this study, which focuses on the shallow reservoir (< 750 m), reveals dilation as a 
primary control, whereas Siler and Pepin (2021), which includes analysis to ~ 1750  m 
depth suggests that changes in coulomb shear stress are a primary control.

Of the stratigraphic factors, thicker geologic units (unitthick) the strongest influence 
hydrothermal processes. This may indicate that faults cutting through thicker geologic 
units preferentially transmit the high flow rates necessary for geothermal production 
relative to faults cutting thinner units. However, based on the ML analyses, this control 
appears to be tertiary to the macro-scale faults and the step-over. The modeltemp vari-
able is not strongly related to production wells relative to the other wells. It is likely that 
our extrapolation of the existing temperature data does not sufficiently resolve advective 
or convective relative to conductive heat transport, and thus modeled temperature is rel-
atively ineffective for resolving discrete fluid-flow pathways. In future work, a different 
strategy for considering temperature data is needed.

Conclusions
Non-negative matrix factorization with k-means clustering (NMFk) analyses was con-
ducted on a 3D geological dataset from Brady geothermal field to elucidate the geologic 
characteristics that control hydrothermal circulation in the shallow (~ 300–600 m depth) 
geothermal reservoir. These analyses show that known, macro-scale faults, i.e., those that 
have been mapped in 3D based on geological and geophysical evidence, are strongly asso-
ciated with the production wells at Brady. Geologic factors that occur most prominently 
within the Brady step-over, such as high spatial densities of faults, and dilatation brought 
on by modeled fault slip, are also strongly associated with production wells relative to other 
wells. These results indicate that the shallow hydrothermal reservoir at Brady is hosted by 
relatively prominent faults and that locations where such faults lie within the subsurface 
projection of the step-over, i.e. the volume of rock with relatively high fault and fracture 
density and where fractures tend to dilate as a result of periodic fault slip, are especially 
well suited for geothermal production. These two factors, macro-scale faults and the Brady 
step-over, together, and not either independently, control the presence of the Brady hydro-
thermal system that has been developed for electricity production and direct thermal uses.

The NMFk methodology successfully differentiates production wells from among 
a larger number of non-productive wells using these geologic data. This suggests that 
these geologic parameters may be assessed at other geothermal sites in order to help 
evaluate site prospectively and/or reservoir processes. In sites with limited subsurface 
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data, the 3D geologic factors may be less well constrained, but analysis similar to what 
has been presented herein may still indicate areas of the subsurface that are likely to 
have the appropriate geologic characteristics for fluid-flow. These types of analysis may 
also be effective as training data for using NMFk or supervised machine learning tech-
niques to identify areas within an unexplored volume of the subsurface that have the 
geologic characteristics that are expected to host productive geothermal wells.
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