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Background
In a conventional approach, several methods need to be adopted and integrated to 
understand the geochemical and geophysical signatures of active geothermal systems 
(e.g., Rybach and Muffler 1981). These methods also apply for greenfield studies and 
include: (a) geochemical investigations, e.g., application of chemical geothermometers 
to infer the temperature of the geothermal reservoir; measurement of gas isotopes, such 
as 3He/4He, to constrain the origin (mantle or crust) of fluids; (b) drilling of exploration 
wells; (c) gravity measurements to map any negative anomaly associated with the steam 
fraction in high-porosity reservoir rocks or to locate zones of lowered density provoked 
by thermal expansion in magmatic bodies; (d) application of electrical methods such as 
resistivity to search for zones of higher-salinity fluids; (e) use of seismic methods for the 
localization of shallow intrusions and estimation of their vertical extension.

Abstract 

Magmatic settings involving active volcanism are potential locations for economic 
geothermal systems due to the occurrence of high temperature and steam pressures. 
Indonesia, located along active plate margins, hosts more than 100 volcanoes and, 
therefore, belongs to the regions with the greatest geothermal potential worldwide. 
However, tropical conditions and steep terrain reduce the spectrum of applicable 
exploration methods, in particular in remote areas. In a case study from the Lamon‑
gan volcanic field in East Java, we combine field-based data on the regional structural 
geology, elemental and isotopic composition of thermal waters, and the mineralogical 
and geochemical signatures of volcanic rocks in exploring hidden geothermal systems. 
Results suggest infiltration of groundwater at the volcanoes and faults. After infiltra‑
tion, water is heated and reacts with rocks before rising to the surface. The existence of 
a potential heat source is petrologically and geophysically constrained to be an active 
shallow mafic-magma chamber, but its occurrence is not properly reflected in the 
composition of the collected warmed spring waters that are predominantly meteoric 
in origin. In conclusion, spring temperature and hydrochemistry alone may not always 
correctly reflect the deep geothermal potential of an area.
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Young volcanic zones along convergent plate margins are prime targets for the explo-
ration of geothermal energy sources, as active magma chambers have an intrinsically 
high geothermal potential (Bogie et al. 2005). Heat transfer in those areas is dominated 
by circulating fluids and, in the case of two-phase systems, also by steam. Therefore, 
surface manifestations, such as hot springs and steam vents, are indicators for geother-
mal activity. Prior to any geophysical surveying of geothermal systems, a field-based 
geological and geochemical reconnaissance is required to develop a conceptual model 
of a geothermal field. The exploration phase predating drilling of the first well is com-
monly termed greenfield exploration, referring to the juvenile non-exploited condition 
of a geothermal reservoir (Hochstein 1988). However, superficial geothermal manifes-
tations are not manifested in all volcanic fields. Geological formations serving as bar-
riers or seals for fluids may prevent discharge of up-flowing waters. Java is geologically 
associated with the magmatic arc of the Sunda subduction zone (Simkin and Siebert 
1994). Here, geothermal waters were the subject of exploration and utilization over sev-
eral decades (Hochstein and Browne 2000; Hochstein and Sudarman 2008). However, 
the efforts to explore and exploit geothermal prospects have changed over the years 
and also with respect to their location along the island chain. For example, activities 
for exploitation of geothermal energy centered on vapor-dominated systems in western 
and central Java (in Salak or Cisolok) at the end of the 1970s, where the infrastructure 
was sufficiently developed. Efforts increased in the mid-1990s, when the Indonesian 
government encouraged foreign investors to take part in the exploration. Recently, the 
main activities are focused on existing power plants at Kamojang, Wyang Windu and 
Djeng. The eastern part of Java, however, is still only poorly explored although several 
active magmatic fields like the Lamongan volcanic field (LVF) (Fig. 1), located southeast 
of Surabaya in eastern Java, are known to exist. Tropical conditions, steep terrain and 
difficult access could explain why a well-substantiated geothermal concept for East Java 
is still missing.

This study provides a first survey of the geothermal potential of the Tiris area located 
on the northeastern slope of Lamongan Volcano in East Java, Indonesia (Figs.  1, 2). 
It is assumed that the Tiris area hosts a geothermal system, as there are some surface 
geothermal manifestations (warm and hot springs) located along the Tancak River 
(Fig.  2). On the other hand, zeolite-bearing veins, for example, indicative of satellite 
boiling zones along the hydrothermal outflow zone and, therefore, also indicative of 
deep-seated geothermal reservoirs (e.g., Lawless et  al. 1995), are absent at Tiris. The 
purpose of this study is to develop a conceptual model of the Tiris geothermal system in 
the Lamongan Volcanic Field (LVF) by combining field observations and chemical data 
of hot and warm springs with a reconnaissance structural–geological mapping, which 
will serve as a baseline study for a subsequent in-depth geological and seismic explo-
ration of the area. The following methods were applied for the characterization and 
chemical and isotopic analyses of fluid and rock samples: electron microprobe analy-
sis (EMPA), Inductively Coupled Plasma Atomic-Emission Spectrometry (ICP-AES), 
Atomic Absorption Spectrophotometry (AAS), X-ray diffraction (XRD), X-ray fluores-
cence (XRF), and mass-spectrometric determination of radioactive (Sr) and stable (18O 
and 2H) isotopes.
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Geological setting
Gunung Lamongan (8.00°S, 113.342°E, and 1625  m above sea level) is one of several 
active volcanoes located in East Java. During the nineteenth century, Gunung Lamongan 
(last eruption in 1898) was among the most active volcanoes in Indonesia and seismic 
activity is ongoing since then (Carn 2000).

Fig. 1  Geological map of the region Probolinggo Lumajang in Eastern Java Indonesia showing the location 
of this study investigation area (Mt. Lamongan)
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Java is located on the Sunda Arc that forms part of the Indonesian Archipelago 
between the landmasses of Eurasia and Australia at the NE margin of the Eurasian Plate. 
The Sunda Arc is a volcanic belt that has formed as result of the subduction of the Indo-
Australian Plate beneath the Eurasian Plate, with a rate of ~6 cm a−1 (Hamilton 1979; 
Puspito and Shimazaki 1995). It extends from the Andaman Islands north of Sumatra to 
the Island of Alor in the Banda Sea, covering a distance of more than 3000 km (Carn and 
Pyle 2001). Subduction in the Sunda Arc started in the early Eocene (Katili 1975; Ham-
ilton 1979; Rangin et  al. 1990). Java hosts 90 Holocene volcanoes, with the Merapi in 
West Java as one of most active volcanoes worldwide. An E–W trending chain of more 
than 30  modern volcanoes forms the central spine of Java. The rocks building up the 
volcanoes classify as tholeiitic, calc-alkaline, and high-K calc-alkaline and alkaline suites 
(Whitford et al. 1979). Basalt and basaltic-andesite constitute the dominating rock types, 
mainly composed of anorthitic plagioclase, pyroxene, and minor olivine.

Smyth et al. (2008) divide Java’s major geological provinces as follows:

(1)	 The early Cenozoic mountain arc: today uplifted and partially eroded. It is one of 
the few exposures of arc-related crystalline basement built up by Cretaceous ophi-
olites. Arc rocks are thick (>2500 m) and are spread over a distance of 50 km.

(2)	 The Kendeng basin: this poorly exposed region is characterized by a strong nega-
tive Bouguer anomaly, which extends all the way to Bali. This anomaly becomes 
less negative around the modern volcanic arc. It is E–W oriented for at least 
400 km parallel to the southern mountains. It is filled by volcanoclastic turbidites 
and pelagic mudstones.

Fig. 2  Magnified map of the investigation area around the Lamongan Volcano: red circles indicate the loca‑
tion of the rock samples, light blue circle the ground water samples and the dark blue circle the hot springs. 
The region is characterized by the occurrence of two volcanic complexes, the Lamongan and Argopuro
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(3)	 The Sunda shelf: the area was explored for hydrocarbon exploration. Between 2000 
and 6000 m of Eocene to Pliocene shallow marine clastic and extensive carbonate 
sedimentary rocks were deposited within fault-controlled basins.

Mount Lamongan

Lamongan volcanic field (LVF) of East Java represents a volcanic region with numer-
ous cindered cones and maars. The LVF is situated at the transition zone between the 
compression-dominated subduction zone to the south and the extension-dominated 
back-arc region Masalima to the north, forming the Java Sea. Two previous studies 
(Carn 2000; Carn and Pyle 2001) investigated the morphologic, petrologic and geo-
chemical characteristics of the maars and cindered cones, but did not involve geother-
mal field studies. Maars and cindered cones formed when magmas came in contact with 
water, causing a phreatomagmatic eruption associated with pyroclastic fallouts and flow 
deposits (Heiken 1971; Fisher and Waters 1970; Moore et al. 1966). Some of the maars 
in the Lamongan area are NW–SE oriented, comparable with the strike of the Tiris fault 
(Carn 1999). The Lamongan volcano is located in a structurally complex area and was 
very active until approximately 14,000 years ago. The volcano is composed of three dif-
ferent vents: Tarub, Tjupu and Lamongan itself (Carn 1999). Tarub is the oldest cone and 
detached from the younger stratocone of Lamongan by a prominent NW–SE depression, 
which is most likely fault related. Recent studies have shown that Lamongan belongs to 
the reviving volcanoes in Indonesia, as seismic activities have recently increased (Chaus-
sard and Amelung 2012).

Tiris is a small village located on the eastern flank of Mount Lamongan. Several warm 
springs occur in close proximity. They have temperatures ranging between 35 and 45 °C 
(Deon et al. 2012, 2013), which are ~10 °C warmer than the surrounding groundwater. 
Because of this temperature difference, we supposed that the area hides a geothermal 
potential hard to be exploited due to the difficult field conditions.

Rainwater may have been trapped in the pyroclastite layers and could have build hori-
zons which previously interacted with the magma beneath the Lamongan and possibly 
represents one part of the fluids available in the area. One should consider the location 
of LVF approximately 20 km from the coast. In the area, several lineaments and faults 
are known (Carn 1999). Thus, it is beyond doubt that a considerable water infiltration 
may have occurred sometime in the past.

Topography, morphology, and hydrogeology

The area of Mt. Lamongan is characterized by a steep terrain landscape and dense tropi-
cal vegetation. Geological mapping of the area is challenging due to difficult access and 
the occurrence of severely weathered rocks at the surface. For instance, the outcropping 
basaltic rocks experienced intense lateritization. Heavy rain from December to May and 
a dry period from May to October characterize the climate in East Java. Moreover, sig-
nificant variation of the precipitation rate exists depending on the elevation area. The 
annual precipitation in Pasuruan approximately 40 km NW of the study area at 15 m 
above sea level (a.s.l.) is 1300 mm/year. In Klakah, situated S of Mt. Lamongan at 250 m 
a.s.l., it is about twice that much, i.e., 2400 mm/year (Sporrer 1995). The steep area is 
sparsely populated and access to outcrops and hot springs is difficult. The fluid sampling 
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locations refer to the following altitudes (a.s.l.): springs Tiris 1 to Tiris 6 = 510 m; spring 
WP7 = 382 m.

Methods
Field work and sampling

The fieldwork around the Lamongan area covered an area of about 16 km2 and included the 
systematic structural measurement of the strike direction of fractures. In particular, frac-
tures were measured in the area around Lamongan after the last volcanic activity in March 
2012. Lineaments could not be recognized in the field, but are evident in aerial photographs.

Magmatic rocks were sampled around Mt. Lamongan volcano; water samples were 
collected from the main river (Tancak), springs, maars, and from the sea (outside the 
investigation area; Figs. 1, 2). The springs Tiris 1–6 are located along the Tancak river. 
Water samples were collected from seven warm springs both east (Tiris 1–6) and north-
east of the volcano (WP17), the Tancak river (WP18), and from the lake Ranu Lading 
(WP7 lad). Seawater was sampled on the coast north of the town Probolinggo (WP5). 
Figure 2 compiles the sampling sites around the volcano. The water samples were col-
lected according to the procedure of Giggenbach and Goguel (1989) and Marini (2000) 
recommended for the quantitative analysis of the major ions and isotopes of oxygen, 
hydrogen, and strontium. Water samples were filtered using a 0.45 µm membrane filter 
to prevent the interaction of the fluid with suspended particles and algal growth. For the 
analysis of anions and isotopes, water samples were untreated, while for cation analysis, 
the water samples were acidified with HNO3. Water samples collected for major ions 
and Sr-isotope analyses were stored in small polyethene bottles, while for isotope analy-
sis of H and O, the samples were stored in glass bottles.

The sampling was undertaken twice every year since November 2010. One campaign 
took place in the dry season (from May until October), while the other was performed 
in the rainy season (from November until May), to observe seasonal variation due to 
the varying rates of precipitation. The on-site measurements conducted in the differ-
ent seasons covered pH, temperature (T), electrical conductivity, and carbonate content 
(Table 1). Also measured were the contents of total dissolved solids (TDS), salinity, and 

Table 1  Mean values of the field parameters of water samples

Conductivity reported is a mean value based on the field campaigns

TDS total dissolved solid in the liquid

Sample T (°C) pH Conductivity 
(µS/m)

TDS  
(mg/L)

Salinity  
(g/L)

Altitude 
(m a.s.l.)

WP17 Spring 35.0 7.60 1849 91 0.09 382

Tiris 1 Spring 38.0 7.02 1707 1100 1.10 510

Tiris 2 Spring 44.5 7.19 2850 900 1.10 510

Tiris 3 Spring 44.0 7.10 2890 1450 1.48 510

Tiris 4 Spring 44.0 7.10 2760 1380 1.42 510

Tiris 5 Spring 36.2 7.15 2590 1250 1.30 510

Tiris 6 Spring 34.3 7.20 2250 1130 1.14 510

WP 7 Lake 29.0 7.00 1606 803 0.7 320

WP 18 River 27.0 7.00 n.d n.d n.d. 510

WP5 Sea 29.0 7.00 n.d. n.d. n.d. 0
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bicarbonate (measured by titration with a stripe test). The chemical water analyses were 
conducted at the Geochemistry Laboratory, Department of Applied Geosciences, and 
Technical University Berlin, Germany. Anion concentrations (Cl−, SO4

2−) were meas-
ured with an Inductively Coupled Plasma Atomic-Emission Spectrometer (ICP-AES; 
Thermo iCap 6300), while the cations (Ca2+, Mg2+, K+, Na+, Fe2+, Si4+, Li+, Rb+, B3+) 
were determined by Atomic Absorption Spectrophotometry (AAS). Isotope measure-
ments were conducted on a selection of water samples (cf. “X-ray fluorescence analy-
sis (XRF)”, “Stable-isotope (D–O) analysis”). The uncertainty of the measurements is 
~0.05 ppm.

Electron microprobe analysis (EMPA)

Single-spot mineral analyses were performed using a CAMECA SX100 electron 
microprobe operating in the wavelength-dispersive mode at the Electron Microprobe 
Laboratory, Department of Inorganic and Isotope Geochemistry at the Helmholtz 
Centre Potsdam—German Research Centre for Geosciences (GFZ) in Potsdam, Ger-
many. The analytical conditions include an accelerating voltage of 15 kV, a beam cur-
rent of 10 nA, and a focused beam. Well-characterized grains of plagioclase, olivine 
and pyroxene were used as standards. Secondary-electron (SE) images were collected 
with a JEOL JXA 8230 electron microprobe (15 kV accelerating voltage) in the same 
laboratory.

X‑Ray diffraction analysis (XRD)

To determine the modal mineralogy of the rocks by XRD, the rock samples were crushed 
and sieved to obtain the 63-µm fraction. XRD patterns were recorded in transmission 
using a fully automated STOE STADI P diffractometer (Cu-Kα radiation), equipped with 
a primary monochromator and a 7°-wide position sensitive detector, at the Department 
of Chemistry and Physics of Earth Materials at GFZ. The diffractograms were refined 
with the EXPGUI-GSAS software (Larson and Von Dreele 2000; Toby 2001; Belsky et al. 
2002), using reference structures from the ICDS database (Bergerhoff and Brown 1987). 
Additional X-ray measurements (step-scan mode) were performed with an automatic 
Siemens D500 diffractometer (half automatic beam—40α, Graphite secondary mono-
chromator—with Cu Kα 40 kV, 35 mA) at the Section of Material Research and Physics, 
University of Salzburg, Austria.

X‑ray fluorescence analysis (XRF)

XRF analyses were conducted at the Department of Inorganic and Isotope Geochem-
istry at Helmholtz Centre Potsdam—German Research Centre for Geosciences, using 
a PANanalytical AXIOS instrument featuring a 4  kW Rh tube. Additional XRF data 
were acquired at the Section of Material Science and Physics, University of Salzburg, 
on a Bruker S4 Pioneer instrument, equipped with a 4  kW Rh tube. Major elements 
were determined at reduced tube energies. Counting times were chosen such that the 
relative 2σ uncertainties were less than 1 % for Si and Al, and less than 5 % for elements 
occurring at the 1–10 wt% concentration level. For the determination of trace elements, 
tube conditions and counting times were optimized automatically up to 4  kW and 
400 s per element, to obtain a detection limit of ~3 ppm (3σ). Typical errors (2σ) from 
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the counting statistics were 1–2 ppm at low concentrations (<10 ppm), ~5 ppm at the 
100 ppm concentration level, and better than 50 ppm at the 1000 ppm level.

Stable‑isotope (D–O) analysis

δ D and δ 18O measurements were performed at Alfred Wegner Institute, Helmholtz 
Centre for Polar and Marine Research, Potsdam, Germany. The water samples (3 mL) 
were analyzed using a Finnigan MAT Delta-S mass spectrometer equipped with two 
equilibration units for the simultaneous determination of hydrogen and oxygen-isotopic 
composition. In one sequence, 48 water samples (including standards) were measured in 
two equilibration units with 24 sample positions each. The first position of each unit was 
equipped with the measuring standard water. Three standards were used for quality con-
trol. Measuring and control standards were selected according to the expected isotopic 
composition of the samples. The isotope data were corrected linearly compared to the 
standards if necessary. The 1σ standard deviation ranges from 0.03 to 0.08 (O) and from 
0.2 up to 0.8 (D).

Sr‑isotope analysis

Sr-isotope measurements of rocks (basalts and carbonates) and waters were performed 
at Geosciences Centre, University of Göttingen, Germany. For Sr-isotope analysis of 
volcanic rocks, about 100 mg of powdered samples was digested in a mixture of 40 % 
HF and 65 % HNO3 at 100 °C. After complete dissolution and evaporation, the sample 
residue was dissolved in 6 N HCl at 100  °C and again evaporated. The sample residue 
was then re-dissolved in 2.5  N HCl for further treatment using ion-exchange chro-
matography. For the analysis of thermal waters, about 2  mL of water was evaporated 
and re-dissolved in 2.5 N HCl. A sample of CaCO3 was directly dissolved in 2.5 N HCl. 
Separation of Sr from other cations was done on quartz-glass columns using Biorad AG 
50 × 8 (200–400 mesh) resin and 2.5 N HCl. Purified Sr-fractions were loaded onto out-
gassed Re filaments using 0.25 N H3PO4 and measured on a Finnigan MAT262 thermal 
ionization mass spectrometer (TIMS). 87Sr/86Sr ratios were corrected for instrumen-
tal fractionation using the natural 88Sr/86Sr ratio of 8.375209. Routine standard meas-
urements yielded an average 87Sr/86Sr ratio of 0.71040 ±  0.00002 (2σ: n =  15) for the 
NBS987 standard. Only distilled reagents were used for chemical sample preparation. 
Blanks were less than 0.5 ng for Sr. The reproducibility of the individual 87Sr/86Sr ratio 
was equal to or less than 0.00003 (2σ).

Results
Water chemistry

The concentrations of major cations and anions of ground, river, and thermal waters are 
listed in Table 2. Surface water temperatures range between 27 and 29 °C. The sampled 
thermal springs have temperatures ranging from 35 to 45  °C; pH values are between 
7.0 and 7.6. EC values vary from 1710 µS/cm (spring Tiris 1) to 2890 µS/cm (spring 
Tiris 3). Major ions in sampled water are Mg, Na, Cl, and HCO3. Highest values of up 
to 2100 mg/L HCO3 occur in spring water, while lake and river water show lower con-
centrations of maximum 427  mg/L. The samples Tiris 1–6 show a higher Mg content 
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compared to the others: Tiris 2 contains 227 mg/L. The other samples are characterized 
by a lower Mg content, with the exception of WP5, diluted sea water, which contains 
963 ppm. Highest cation-concentrations are Na with values of 406 mg/L in spring water 
and 774  mg/L in seawater. Spring and surface water are most distinct with respect to 
the Cl concentration (Table 2). δ2H and δ18O values plot along the meteoric water line 
(Fig. 3) and range between −5.06 and −5.85 for δ18O and −31.4 and −36.9 for δ2H. No 
significant trend can be recognized, indicating that the values refer to pure rain water.

The Giggenbach ternary diagram (Fig.  4a, b) shows that sampled waters plot in the 
area of peripheral waters, due to low SO4 and high HCO3 concentrations. The warm 
spring Tiris 2 contains ~20  % more Cl than the WP7 spring along the river (WP 18), 
which shows higher HCO3

− concentrations. The seawater sample (WP 5) plots in the 
area of mature waters (Fig. 4a).

As indicated in the Giggenbach and Piper diagrams (Fig.  5), the correlation plot 
(Fig. 6a) Cl over B shows a clustering of spring samples Tiris 1–6 compared to hot spring 
sample WP 17. This separation is also obvious in the Cl/B-ratio, which is high (82) for 
WP 17 and lower (20–34) for Tiris 1–6. The clustering is not that obvious in the Cl/Na 
plot. However, a clear positive correlation exists between the concentrations of Cl and 
Na, as being the major conservative ions. Highest concentrations occur in seawater sam-
ple WP 5. However, with 12.8 g/L, the content is still below mean seawater concentra-
tion of 19 g/L. Similar clustering has been observed in the Cl/Si plot (Fig. 7a), with Tiris 
1–6 springs show higher concentrations than WP17. While Cl concentrations are less 
variable, comparably higher variations in Si concentrations are due to closer location to 
the heat source, where fluids show increased chemical reactions with host rock.

Fig. 3  Plot showing the stable-isotope measured 18O vs. 2H measured on the warm springs samples and 
plotted with the meteoric water reference. A significant trend cannot be recognized as the samples lie all 
very close to the meteoric line. No relevant information can be obtained about water–rock interaction
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Geothermometric calculations

Mg, Ca, Na, and K concentrations in spring water show that the rising waters are not in 
equilibrium. Therefore, cation geothermometers are not applicable. However, the use of 

Fig. 4  a Ternary plot of the major anions Cl−, SO4
2−, HCO3

−. The fluid samples in Tiris show an excess in 
bicarbonate, relatively high to moderate Cl and no sulfate. The slight differences in the concentrations are 
due to seasonal changes, e.g., rainy and dry season. According to the diagram, the waters can be classified as 
immature. b Ternary plot of the major cations (Na, K, Mg). The cation values were clustered as they show very 
similar values. Both plots indicate that the springs may belong to an outflow-recharge area of the system. The 
absence of sulfate may be connected to the spring location in the outflow area of the system
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quartz geothermometers (Fournier 1989) requires assumptions about the quartz mineral 
species whose solubility is controlled dominantly by fluid/rock temperature. Plotting 
SiO2 over log(K2/Mg) helps to identify the dominant species. In our case, the main con-
trolling species is chalcedony (Fig. 7b). Therefore, reservoir temperatures have been cal-
culated based on hot spring samples using the chalcedony conductive, quartz conductive 
and quartz adiabatic geothermometers (Table  3). Calculated temperature using chal-
cedony geothermometer ranges between 107 and 140 °C. These temperatures are con-
sidered as minimum values because the deep hot fluids can have been partially diluted 
by colder shallow, Si-poor freshwaters during their ascent to surface, as suggested by 
Figs. 6a, b, 7a, b.

Mineralogy and petrology of the volcanic rocks

In the Total Alkali Silica (TAS) diagram adapted from Le Bas et  al. 1986, the Lamon-
gan rocks plot in the field of basalt. The basalts, derived from different episodes of 
effusive activity of Lamongan, are mainly composed of plagioclase (An65–An90) accom-
panied by minor olivine and pyroxene (Figs. 8a, b, 9a–c; Tables 4, 5). In fresh samples, 
plagioclase grains are several mm in size, twinned, and virtually unaltered (Fig. 9a–c). 

Fig. 5  Piper diagram of the thermal, ground and sea water developed with the major cations, anions and 
TDS of the fluid samples. A comparison with other springs is the area is not possible due to inaccessible data 
for publication
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Major-element composition of bulk rock is shown in Table  4. The basalts are charac-
terized by low concentrations of Si (46–50 wt% SiO2) and alkali elements (1.6–2.9 wt% 
Na2O, 0.63–2.3  wt% K2O) and are high in Ca (7–11  wt% CaO) (Fig.  10). The narrow 
range in Si indicates that the subsequently extruded magmas in this area experienced a 
relatively low degree of differentiation. 87Sr/86Sr initials range from 0.70430 (WP11) to 
0.70463 (FD8).
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Discussion
Rock petrology

The 87Sr/86Sr ratio of the weakly fractionated basalts varies between 0.70430 and 0.70463 
and recalls the values of basalts close to the Sunda arc minimum (i.e., Whitford et  al. 
1979). It is generally accepted that the 87Sr/86Sr ratio of the volcanic rocks decreases from 
West Java to Bali. A model proposed by Sisson and Bronto (1998) presumes a mantle 

WP17 

Tiris 1 

Tiris 2 

Tiris 3 
Tiris 4 

Tiris 5 

Tiris 6 

WP7 Lad WP18 

0.0 

100.0 

200.0 

300.0 

400.0 

500.0 

600.0 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 

C
l [

m
g/

L]
 

Si [mg/L] 

60
 

80
 

10
0 

12
0 

14
0 

16
0 

18
0 

20
0 

22
0 

24
0 

26
0 

Quartz 
Solubility 

Chalcedony 
Solubility 

WP17 

Tiris 1 
Tiris 2 

Tiris 3 
Tiris 4 

Tiris 5 

Tiris 6 

0 

100 

200 

300 

400 

500 

600 

0 1 2 3 4 5 6 

Si
O

2 
m

g/
kg

log (K2/Mg) 

a

b

Fig. 7  Plot of Cl versus the major cation Si (a). b SiO2-solubility plot showing the dominant species



Page 15 of 21Deon et al. Geotherm Energy  (2015) 3:20 

upwelling that has initiated a pressure release beneath the Lamongan Volcano. Mantle 
upwelling combined with the extensional tectonic characterizing East Java gave rise to a 
locally thinned crust. The presence of one or more shallow magma chambers between 1 

Table 3  Silica-geothermometers applied to the water samples

The numbers in bold are the most likely reservoir temperatures (in °C). Calculated following Fournier (1989)

Sample Chalcedony cond. Quartz cond. Quartz adiabatic

WP17 77 107 107

Tiris 1 107 134 130
Tiris 2 120 146 140

Tiris 3 140 164 155

Tiris 4 132 157 149

Tiris 5 134 158 150

Tiris 6 124 150 143

WP7 Lad 65 96 97

WP18 89 118 116

WP 5 3 34 44

Fig. 8  Microphotographs from optical microscopy. a Unaltered plagioclase crystals showing twinning. b 
Fractured olivine, orthopyroxene and plagioclase (with twinning) grains in lava WP11
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Fig. 9  Secondary-electron images collected with the electron microprobe. a Elongated euhedral plagioclase 
in a microcrystalline matrix. b Fractured olivine surrounded by magnetite (bright). c Fractured plagioclase 
grain with elongated habitus in a microcrystalline matrix
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and 3.5 km depth below Lamongan and Argopuro is geophysically constrained (Chaus-
sard and Amelung 2012). A preliminary geological model assumes two volcanic com-
plexes with a single magma chamber alimenting both edifices (Fig. 11). Whether one or 
two magma chambers occur underneath can be only confirmed by geophysical surveys 
along with deep drillings.

Water composition

The thermal water sampled in the area can be classified, according to the Giggenbach 
diagram, as bicarbonate water. It is the first sampling in the area of Mt. Lamongan. 
However, springs from the nearby Argopuro volcanic complex show a higher sulfate 

Table 4  Bulk rock composition (wt%) of  basalts and  carbonates and  their initial Sr-iso-
topic signature

a  Carbonate rocks sampled outside the research area

Sample SiO2 TiO2 Al2O3 Fe2O3 MnO Mg CaO Na2O K2O P25 Total 87Sr/86Sr

FD1 46.1 1.37 19.1 12.9 0.20 4.58 10.9 2.73 0.85 0.08 99.7 –

FD8 50.3 1.63 15.6 13.4 0.20 3.27 8.11 2.53 1.61 0.39 99.6 0.70463 (±2)

WP2 47.0 1.09 19.4 12.1 0.19 4.99 10.8 2.48 0.63 0.11 99.7 0.70447 (±3)

WP9 49.4 1.06 17.9 10.9 0.16 2.68 7.86 2.86 2.26 0.38 99.7 0.70447 (±2)

WP8 50.0 2.00 14.4 15.5 0.25 3.87 7.68 2.54 1.90 0.53 99.6 0.70445 (±2)

WP11 47.2 1.20 19.0 12.7 0.20 4.67 10.4 2.65 0.64 0.17 99.8 0.70430 (±1)

WP12 44.9 0.92 15.3 12.7 0.19 10.8 11.8 1.56 0.29 0.09 99.8 0.70449 (±1)

WP14 50.7 0.99 20.0 9.3 0.15 2.75 8.21 2.85 2.12 0.41 99.7 0.70428 (±2)

WP17 46.0 1.32 19.2 12.8 0.20 4.92 11.2 2.67 0.84 0.09 99.7 0.70464 (±3)

WP13 47.2 2.03 16.7 14.4 0.26 2.77 9.83 2.72 1.19 0.46 100.0 –

WP19 50.5 0.94 19.9 11.2 0.18 3.20 8.71 3.26 1.09 0.24 100.0 –

WP20 51.6 0.94 20.6 10.1 0.18 2.41 9.44 3.62 0.97 0.15 100.0 –

WP22 48.8 1.04 21.0 10.7 0.18 3.51 10.8 3.17 0.66 0.09 99.9 –

WP4aa 0.4 0.00 0.13 0.08 0.01 0.21 54.7 0.05 0.00 0.00 99.8 –

WP4ba 4.4 0.08 1.99 0.87 0.01 0.47 50.8 0.06 0.04 0.00 100.0 –

Table 5  Modal composition (wt%) of basalts

a  Adopted from Carn and Pyle (2001)

Sample Rock type Plagioclase Olivine Clinopyroxene Orthopyroxene Calcite Chlorite

FD1 Basalt Labradorite 94 6 – –

FD8 Basalt Labradorite 86 13 Diopside 1

WP2 Basalt Labradorite 72 28

WP9 Basalt Labradorite 71 29

WP8 Basalt Labradorite 63 37

WP11 Basalt Labradorite 79 21

WP12 Basalt Labradorite 42 57 4

WP14 Basalt Labradorite 83 17

WP 17 Basalt Labradorite 71 29

WP13 Basalt Andesine 50 Diopside 18 Augitea 28

WP19 Basalt Andesine 68 Diopside 30 1

WP20 Basalt Labradorite 68 Diopside 9 Ferrosilite 23

WP22 Basalt Labradorite 65 Diopside 14 Ferrosilite 21
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content, higher temperatures and a lower pH (Pertamina Geothermal Energy 2015, 
pers. Comm.). This would indicate an active magma chamber and a heat source located 
beneath the Argopuro volcano and defines the Lamongan area as an outflow region from 
the Argopuro volcanic complex.

Fig. 10  Total alkali vs. silica diagram of Le Bas et al. (1986). This diagram classifies our rock samples as basalts. 
The red squares refer to the samples of this study. The Lamongan basalts plot along the line, which divide 
alkaline and subalkaline domain. Note the small SiO2 range of our samples, indicating low fractionation of the 
primitive magma

Fig. 11  Tentative model of the Lamongan geothermal system (modified from Boogie et al. 2005)



Page 19 of 21Deon et al. Geotherm Energy  (2015) 3:20 

Isotope ratios show a basically meteoric origin of the sampled groundwater. High ele-
ment concentrations and increased salinity are caused by strong alteration processes, 
along with high dissolution rates in the center of the geothermal field at Argopuro. 
Groundwater is transported and cooled down towards the discharge area and arises in 
hot springs, which show lower temperatures and higher HCO3 concentrations. Rela-
tively high Li and B concentrations are typical for basaltic-andesite rock formations 
(Nicholson 1993). Potassium shows concentrations typical for geothermal-alteration 
patterns, characterized by the formation of illite, smectite, or kaolinite (Brehme 2015). 
Low SO4 values are due to the location of springs in the outflow zone. Sulfate minerals 
generally precipitate in low-pH springs occurring in the center of the geothermal field 
(Fig. 11). Generally, the WP 17 spring has slightly different Na/Cl ratios than Tiris 1–6 
springs. Tiris 1–6 springs are located closer to the geothermal center, which let them 
cluster at higher concentrations of, i.e., Cl, Na, and B. It is interesting to note that the Mg 
content is elevated in the water from the springs in the proximity of the river running 
through basalts (Tiris 1–6). Their higher temperature facilitates the solution of Mg from 
these rocks.

The chalcedony geothermometer suggests a reservoir temperature of ~130 °C, which 
is reliable considering that the springs are located in an outflow area of a magmatically 
influenced system. Comparable systems, as the Lahendong geothermal field, which is 
controlled by young volcanism, show slightly higher reservoir temperatures in the center 
of the field (Brehme et al. 2014). However, the Lahendong field also shows temperatures 
of 140 °C in the outflow area (Brehme et al. 2014, 2015).

Kim et  al. (2003) describe a geothermal setting similar to Tiris for the Jeju volcanic 
island in South Korea. The occurring lithologies share the properties of the rocks of the 
Tiris geothermal area: high permeable pyroclastites underlying less permeable basaltic 
lava. In the LVF, the pyroclastic units must have been derived from previous eruptions 
of Mt. Argopuro and the overlain fractured basalts are the products of the subrecent 
effusive activity of Mount Lamongan (nineteenth century). Faults and fractured rock 
play a major role in development of geochemical characteristics of the geothermal field 
(Brehme et al. 2015 submitted). Presumably, groundwater is migrating through the per-
meable pyroclastites, following pathways to the surface through predominant faults or 
fracture patterns. On its way to the surface, the water becomes slightly heated and equil-
ibrated with the mafic rocks, as implied by the virtual identity of their 87Sr/86Sr-isotopic 
composition. Interaction with a mantle-related source is further implied by the excess 
of HCO3

−, since carbonate rocks are unknown in the study area and the only origin of 
HCO3

− could be explained by the degassing of mantle-derived magmas. This prelimi-
nary field study should be succeeded by subsurface exploration to improve the knowl-
edge of the LVF geothermal system.

Conclusions
The occurrence of highly permeable pyroclastites overlain by basalts supports the exist-
ence of a concealed layer, as described by Hochstein (1988), which could be responsible 
for capturing H2S, accounting for the HCO3

− excess of the springs located in the outflow 
zone of the system. According to Chaussard and Amelung (2012), the Lamongan field 
belongs to the volcanoes with the world’s highest uplift areas evidenced by InSAR data, 
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indicating magmatic activity in the subsurface. Lamongan might host potential hydro-
thermal resources, however, these are not expressed by surface manifestations, such as 
hot springs with T > 50 °C, steam grounds, or fumaroles as in other regions in Indone-
sia. The frequent occurrence of maars and cinder cones is related to the interaction of 
magma and hot water; however, the maar-water temperature is the same as the ground-
water temperature in the area (29 °C). In addition to passive seismic recording and more 
comprehensive fluid sampling, shallow drillings are mandatory to evaluate the geother-
mal potential in this area. Lamongan likely constitutes the outflow area of a larger sys-
tem, with the nearby Argopuro being the upflow area of this system. In this area, springs 
with substantially higher temperatures and lower pH values occur, fingerprinting the 
existence of an active magma chamber at depth. Due to concession and legal issues 
according to Indonesian law, these data are not open for publishing and thus, could not 
be used here. It becomes, therefore, challenging to link and proof the conclusions of this 
survey campaign. Our exploration study demonstrates that greenfield exploration based 
on hydrochemistry may fail to correctly evaluate the deep geothermal potential in tropi-
cal areas rich in meteoric water, and has to be succeeded by other site-specific explora-
tion work.
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