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Abstract

In high-enthalpy geothermal reservoirs and many other geo-technical applications,
coupled non-isothermal multiphase flow is considered to be the underlying governing
process that controls the system behavior. Under the high temperature and high
pressure environment, the phase change phenomena such as evaporation and
condensation have a great impact on the heat distribution, as well as the pattern of
fluid flow. In this work, we have extended the persistent primary variable algorithm
proposed by (Marchand et al. Comput Geosci 17(2):431–442) to the non-isothermal
conditions. The extended method has been implemented into the OpenGeoSys code,
which allows the numerical simulation of multiphase flow processes with phase
change phenomena. This new feature has been verified by two benchmark cases. The
first one simulates the isothermal migration of H2 through the bentonite formation in a
waste repository. The second one models the non-isothermal multiphase flow of
heat-pipe problem. The OpenGeoSys simulation results have been successfully verified
by closely fitting results from other codes and also against analytical solution.

Keywords: Non-isothermal multiphase flow; Geothermal reservoir modeling;
Phase change; OpenGeoSys

Background
In deep geothermal reservoirs, surface water seepages through fractures in the rock
and moves downwards. At a certain depth, under the high temperature and pressure
condition, water vaporizes from liquid to gas phase. Driven by the density difference, the
gas steam then migrates upwards. Along with its path, it will condensate back into the
liquid form and release its energy in the form of latent heat. Often, this multiphase flow
process with phase transition controls the heat convection in deep geothermal reservoirs.
Besides, suchmultiphase flow and heat transport are considered to be the underlying pro-
cesses in a wide variety of applications, such as in geological waste repositories, soil vapor
extraction of Non-Aqueous Phase Liquid (NAPL) contaminants (Forsyth and Shao 1991),
and CO2 capture and storage (Park et al. 2011; Singh et al. 2012). Throughout the process,
different phase zones may exist under different temperature and pressure conditions. At
lower temperatures, water flows in the form of liquid. With the rise of temperature, gas
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and liquid phases may co-exist. At higher temperature, water is then mainly transported
in the form of gas/vapor. Since the physical behaviors of these phase zones are different,
they are mathematically described by different governing equations. When simulating
the geothermal convection with phase change phenomena, this imposes challenges to the
numerical models. To numerically model the above phase change behavior, there exist
several different algorithms so far. The most popular one is the so-called primary vari-
able switching method proposed byWu and Forsyth (2001). InWu’s method, the primary
variables are switched according to different phase states. For instance, in the two phase
region, liquid phase pressure and saturation are commonly chosen as the primary vari-
ables; whereas in the single gas or liquid phase region, the saturation of the missing phase
will be substituted by the concentration or mass fraction of one light component. This
approach has already been adopted by the multiphase simulation code such as TOUGH
(Pruess 2008) and MUFTE (Class et al. 2002). Nevertheless, the governing equations
deduced from the varying primary variables are intrinsically non-differentiable and often
lead to numerical difficulties. To handle this, Abadpour and Panfilov (2009) proposed
the negative saturation method, in which saturation values less than zero and bigger than
one are used to store extra information of the phase transition. Salimi et al. (2012) later
extended this method to the non-isothermal condition, and also taking into account the
diffusion and capillary forces. By their efforts, the primary variable switching has been
successfully avoided. Recently, Panfilov and Panfilova (2014) has further extended the
negative saturation method to the three-component three-phase scenario. As the nega-
tive saturation value does not have a physical meaning, further extension of this approach
to general multi-phase multi-component system would be difficult. For deep geothermal
reservoirs, it requires the primary variables of the governing equation to be persistent
throughout the entire spatial and temporal domain of the model. Following this idea,
Neumann et al. (2013) chose the pressure of non-wetting phase and capillary pressure
as primary variables. The two variables are continuous over different material layers,
which make it possible to deal with heterogeneous material properties. The drawback
of Neumann’s approach is that it can only handle the disappearance of the non-wetting
phase, not its appearance. As a supplement, Marchand et al. (2013) suggested to use mean
pressure and molar fraction of the light component as primary variables. This allows both
of the primary variables to be constructed independently of the phase status and allows
the appearance and disappearance of any of the two phases. Furthermore, this algorithm
could be easy to be extended to multi-phases (≥ 3) multi-components (≥ 3) system.
In this work, as the first step of building a multi-component multi-phase reactive

transport model for geothermal reservoir simulation, we extend Marchand’s component-
basedmulti-phase flow approach (Marchand et al. 2013) to the non-isothermal condition.
The extended governing equations (‘Governing equations’ section), together with the
Equation of State (EOS) (‘Constitutive laws’ section), were solved by nested Newton iter-
ations (‘Numerical solution of the global equation system’ section). This extended model
has been implemented into the OpenGeoSys software. To verify the numerical code, two
benchmark cases were presented here. The first one simulates the migration of H2 gas
produced in a waste repository (‘Benchmark I: isothermal injection of H2 gas’ section).
The second benchmark simulates the classical heat-pipe problem, where a thermal con-
vection process gradually develops itself and eventually reaches equilibrium (‘Benchmark
II: heat pipe problem’ section). The numerical results produced by OpenGeoSys were
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verified against analytical solution and also against results from other numerical codes
(Marchand et al. 2012). Furthermore, details of numerical techniques regarding how to
solve the non-linear EOS system were discussed (‘Numerical solution of EOS’ section). In
the end, general ideas regarding how to include chemical reactions into the current form
of governing equations are introduced.

Method
Governing equations

Following Hassanizadeh and Gray (1980), we write instead the mass balance equations of
each chemical component by summing up their quantities over every phase. According
to Gibbs Phase Rule (Landau and Lifshitz 1980), a simplest multiphase system can be
established with two phases and two components. Considering a system with water and
hydrogen as constitutive components (with superscript h and w), they distribute in liquid
and gas phase, with the subscript α ∈ L,G. The component-basedmass balance equations
can be formulated as

�
∂(SLρw

L + SGρw
G )

∂t
+ ∇(ρw

L vL + ρw
GvG) + ∇(jwL + jwG) = Fw (1)

�
∂(SLρh

L + SGρh
G)

∂t
+ ∇(ρh

LvL + ρh
GvG) + ∇(jhL + jhG) = Fh, (2)

where SL and SG indicate the saturation in each phase. ρi
α (i ∈ {h,w},α ∈ {L,G}) repre-

sents the mass density of i-component in α phase. � refers to the porosity. Fh and Fw are
the source and sink terms. The Darcy velocity vL and vG for each fluid phase are regulated
by the general Darcy Law

vL = −KKrL
μL

(∇PL − ρLg) (3)

vG = −KKrG
μG

(∇PG − ρGg). (4)

Here, K is the intrinsic permeability, and g refers to the vector for gravitational force.
The terms jwL , jhL, jwG, and jhG represent the diffusive mass fluxes of each component in
different phases, which are given by Fick’s Law as

j(i)α = −�SαραD(i)
α ∇C(i)

α . (5)

Here D(i)
α is the diffusion coefficient, and C(i)

α the mass fraction. When the non-
isothermal condition is considered, a heat balance equation is added, with the assumption
that gas and liquid phases have reached local thermal equilibrium and share the same
temperature.

�∂[ (1 − SG)ρLuL + SGρGuG]
∂t

+ (1 − �)∂(ρScST)

∂t
(6)

+∇[ρGhGvG]+∇[ρLhLvL]−∇(λT∇T)

= QT + �hvap
(

�
∂(ρLSL)

∂t
− ∇(ρLvL)

)

In the above equation, the phase density ρG, ρL, the specific internal energy in different
phase uL, uG and specific enthalpy in different phase hL and hG are all temperature and
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pressure dependent. While ρS and cS are the density and specific heat capacity of the
soil grain, λT refers to the heat conductivity, and QT is source term, �hvap(�∂(ρLSL)

∂t −
∇(ρLvL)) represents the latent heat term according to (Gawin et al. 1995). Generally, the
specific enthalpy in Eq. 6 can be described as follows

hα = cpαT . (7)

Here cpα is the specific heat capacity of phase α at given pressure. At the same time,
relationship between internal energy and enthalpy can be described as

hα = uα + PαVα , (8)

where Pα and Vα are the pressures and volumes of phase α. Since we consider the liquid
phase is incompressible, its volume change can be ignored, i.e. h = u.

Non-isothermal persistent primary variable approach

Here in this work, we follow the idea of Marchand et al. (2013), where the ‘Persistent
Primary Variable’ concept were adopted. A new choice of primary variables consists of:

• P [Pa] is the weighted mean pressure of gas and liquid phase, with each phase volume
as the weighting factor. It depends mainly on the liquid saturation S.

P = γ (S)PG + (1 − γ (S))PL (9)

Here γ (S) stands for a monotonic function of saturation S, with
γ (S) ∈[ 0, 1] , γ (0) = 0, γ (1) = 1 . In Benchmark I (‘Benchmark I: isothermal
injection of H2 gas’ section), we choose

γ (S) = 0

In Benchmark II (‘Benchmark II: heat pipe problem’ section), we choose

γ (S) = S2

When one phase disappears, its volume converges to zero, making the P value equal
to the pressure of the remaining phase. If we assume the local capillary equilibrium,
the gas and liquid phase pressure can both be derived based on the capillary pressure
Pc, that is also a function of saturation S.

PL = P − γ (S)Pc(S) (10)

PG = P + (1 − γ (S))Pc(S) (11)

• X [-] refers to the total molar fraction of the light component in both fluid phases.
Similar to the mean pressure P, it is also a continuous function throughout the phase
transition zones. We formulate it as

X = SNGXh
G + (1 − S)NLXh

L
SNG + (1 − S)NL

(12)

In a hydrogen-water system, Xh
L and Xh

G refer to the molar fraction of the hydrogen in
the two phases, and NL and NG are the respective molar densities [mol m−3].
Based on the choice of new primary variables, the mass conservation Eqs. 1 and 2 can
be transformed to the molar mass conservation. The governing equations of the
two-phase two-component system are then written as
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�∂((SNG + (1 − S)NL)X (i))

∂t
(13)

+∇
(
NLX(i)

L vL + NGX(i)
G vG

)
+ ∇

(
NLSLW (i)

L + NGSGW (i)
G

)
= F(i)

with i ∈ (h,w) and the flow velocity v regulated by the generalized Darcy’s law,
referred to Eqs. 3 and 4.
The molar diffusive flux can be calculated following Fick’s law

Wi
α = −D(i)

α �∇X(i)
α . (14)

• T [ K] refers to the Temperature. If we consider the temperature T as the third
primary variable, the energy balance equation can then be included.

�∂
[
(1 − SG)NL

(∑
X(i)
L M(i)

)
uL + SGNG

(∑
X(i)
G M(i)

)
uG

]
∂t

(15)

+ (1 − �)∂(ρScST)

∂t
− ∇

[
NG

(∑
X(i)
G M(i)

)
hGvG

]

−∇
[
NL

(∑
X(i)
L M(i)

)
hLvL

]
− ∇ (λT∇T) = QT

The non-isothermal system can thus be simulated by the solution of combined Eqs. 13
and 15, with P, X, and T as primary variables. Once these three primary variables are
determined, the other physical quantities are then constrained by them and can be
obtained by the solution of EOS system. These secondary variables were listed in Table 1.
Compared to the primary variable switching (Wu and Forsyth 2001) and the negative
saturation (Abadpour and Panfilov 2009) approach, the choice of P and X as primary vari-
ables fully covers all three possible phase states, i.e., the single-phase gas, two-phase, and
single-phase liquid regions. It also allows the appearance or disappearance of any of the
two phases. Instead of switching the primary variable, the non-linearity of phase change
behavior was removed from the global partial differential equations and was embedded
into the solution of EOS.

Closure relationships

Mathematically, the solution for any linear system of equations is unique if and only if
the rank of the equation system equals the number of unknowns. In this work, the com-
bined mass conservation of Eqs. 1, 2, and the energy balance Eq. 6 must be determined
by three primary variables. Other variables are dependent on them and considered to be
secondary. Such nonlinear dependencies form the necessary closure relationships.

Table 1 List of secondary variables and their dependency on the primary variables

Parameters Symbol Unit

Gas phase saturation S(P, X) [-]

Molar density of phase α Nα(P, X , T) [ mol m−3]

Molar fraction of component i in phase α X(i)
α (P, X , T) [-]

Capillary pressure Pc(S) [Pa]

Relative permeability of phase α Krα(S) [-]

Specific internal energy of phase α uα(P, X , T) [ J mol−1]

Specific enthalpy of phase α Hα(P, X , T) [ J mol−1]

Heat conduction coefficient λpm(P, X , S, T) [ W m−1 K−1]
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Constitutive laws

Dalton’s Law regulates that the total pressure of a gas phase is equal to the sum of partial
pressures of its constitutive non-reacting chemical component. In our case, a gas phase
with two components, i.e., water and hydrogen is considered. Then the gas phase pressure
PG writes as

PG = PhG + PwG. (16)

Ideal Gas Law In our model, the ideal gas law is assumed, where the response of gas
phase pressure and volume to temperature is regulated as

PG = nRT
V

, (17)

where R is the Universal Gas Constant (8.314 J mol−1K−1), V is the volume of the gas
and n stands for the mole number gas. Reorganizing the above equation gives the molar
density of gas phase NG

NG = n
V

= PG
RT

. (18)

Combining Dalton’s Law of Eq. 16, we have

Nh
G = PhG

RT
,Nw

G = PwG
RT

. (19)

Furthermore, the molar fraction of component i can be obtained by normalizing its
partial pressure with the total gas phase pressure,

Xi
G = PiG

PG
. (20)

Incompressible Fluid Unlike the gas phase, the liquid phase in our model is consid-
ered to be incompressible, i.e., the density of the fluid is linearly dependent on the molar
amount of the constitutive chemical component. By assuming standard water molar den-
sity Nstd

L = ρstd
w
Mw , with ρstd

w refers to the standard water mass density (1000 kg m−3 in our
model), the in-compressibility of the liquid phase writes as

NL = Nstd
L

1 − Xh
L
. (21)

Henry’ LawWe assume that the distribution of light component (hydrogen in our case)
can be regulated by the Henry’s coefficient Hh

W (T), which is a temperature-dependent
parameter.

PhGH
h
W (T) = NLXh

L (22)

Raoult’s Law For the heavy component (water), we apply Raoult’s Law that the partial
pressure of the water component in the gas phase changes linearly with its molar fraction
in the liquid.

PwG = Xw
L P

w
Gvapor(T) (23)

Here Xw
L is the molar fraction of the water component in the liquid phase. PwGvapor(T)

is the vapor pressure of pure water, and it is a temperature-dependent function in non-
isothermal scenarios.
EOS for isothermal systems Based on the constitutive laws discussed in the ‘Constitutive

laws’ section, we have:
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X h
L N

std
L

Xw
L H

h
W (T)

+ Xw
L P

w
Gvapor(T) = PG (24)

PGXh
G = N std

L
Hh
W (T )

X h
L

Xw
L

(25)

According to Eqs. 24 and 25, Xh
L and Xh

G can be calculated explicitly, under the
condition:

G(T) = Hh
W (T )PwGvapor(T )

N std
L

<
1
4

(26)

which is obviously satisfied in water-air and water-hydrogen system, i.e., under the con-
dition that the temperature T is 25 ◦C, with H h

W (T) = 7.8 × 10−6[mol m−3 Pa−1],
PwGvapor(T) = 3173.07[ Pa], then we could have G(T) = 4.54 × 10−7 � 1

4 . Here, if we
only consider isothermal condition, the temperature is assumed to be fixed with T0. In
summary, Xh

L and Xh
G could be expressed as:

Xh
L = Xm(PL, S,T0) = Nstd

L + (PL + Pc)Hh
W (T0)

2Hh
W (T0)PwGvapor(T0)

(27)

+
(√

(Nstd
L + (PL + Pc)Hh

W (T0))2 − 4(PL + Pc)Hh
W (T0)Nstd

L PwGvapor(T0)
)

2Hh
W (T0)PwGvapor(T0)

Xh
G = XM(PG, S,T0) = Xh

LN
std
L

Hh
W (T0)PG(1 − Xh

L)
(28)

Where S is the saturation of light component, and Pc represents the capillary pressure.
The above equations are the most general way of calculating the distribution of molar
fraction. In Benchmark I (‘Benchmark I: isothermal injection of H2 gas’ section), we follow
Marchand’s idea (Marchand and Knabner 2014), by assuming there is no water vaporiza-
tion and the gas phase contains only hydrogen, which indicate PG ≡ PhG and Xh

G ≡ 1.
Therefore Eqs. 27 and 28 could be reformulated as:

Xh
L = Xm(PL, S,T0) = (PL + Pc)Hh

W (T0)

(PL + Pc)Hh
W (T0) + Nstd

L
(29)

Xh
G ≡ 1 (30)

Here, for simplification purpose, if we combined with Eqs. 10 and 11, Xh
L and Xh

G could
be expressed as functions of mean pressure P and gas phase saturation S, and the above
formulation can be transformed to

Xh
L = Xm(PL(P, S(P,X )), S(P,X),T0) = Xm(P, S,T0) (31)

Xh
G = XM(PG(P, S(P,X )), S(P,X ),T0) = XM(P, S,T0). (32)

Assuming the local thermal equilibrium of the multi-phase system is reached, then the
Equations of State (EOS) are formulated accordingly based on the three different phase
states.
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• In two phase region
Molar fraction of hydrogen (Xh

L and Xh
G) and molar density in each phase (NG and

NL) are all secondary variables that are dependent on the change of pressure and
saturation. They can be determined by solving the following non-linear system.

Xh
L = Xm(P, S,T0) (33)

Xh
G = XM(P, S,T0) (34)

NG = PG(P, S )

RT0
(35)

NL = Nstd
L

1 − Xh
L

(36)

SNG(X − Xh
G) + (1 − S )NL(X − Xh

L)

SNG + (1 − S )NL
= 0 (37)

• In the single liquid phase region
In a single liquid phase scenario, the gas phase does not exist, i.e., the gas phase
saturation S always equals to zero. Meanwhile, the molar fraction of light component
in the gas phase Xh

G can be any value, as it will be multiplied with the zero saturation
(see Eqs. 13 to 14) and vanish in the governing equation. This also applies to the gas
phase molar density NG, whereas the two parameters can be arbitrarily given, and
have no physical impact. So to determine the EOS, we only need to solve for the
liquid phase molar fraction and density.

Xh
L = X (38)

NL = Nstd
L

1 − X
(39)

• In the single gas phase region
Similarly, in a single gas phase scenario, the liquid phase does not exist, i.e., the gas
phase saturation S always equals to 1, whereas the liquid phase saturation remains
zero. Meanwhile, the molar fraction of light component in the liquid phase Xh

L can be
any value, as it will be multiplied with the zero liquid phase saturation (see Eqs. 13
to 14) and vanish in the governing equation. This also applies to the liquid phase
molar density NG, whereas the two parameters can be arbitrarily given, and have no
physical meaning. So to determine the EOS, we only need to solve for the gas phase
molar fraction and density.

Xh
G = X

NG = P
RT0

EOS for non-isothermal systems

As the energy balance of Eq. 6 has to be taken into account under the non-isothermal
condition, all the secondary variables not only are dependent on the pressure P but
also rely on the temperature T. Except for the parameters mentioned above, several
other physical properties are also regulated by the T/P dependency. Furthermore, in
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a non-isothermal transport, high non-linearity of the model exists in the complex varia-
tional relationships between secondary variables and primary variables. Therefore, how
to set up an EOS system for each fluid is a big challenge for the non-isothermal multi-
phase modeling. In the literature, (Class et al. 2002; Olivella and Gens 2000; Peng and
Robinson 1976; Singh et al. 2013a, and Singh et al. 2013b) have given detailed procedures
of solving EOS to predicting the gas and liquid thermodynamic and their transport prop-
erties. Here in our model, we follow the idea by Kolditz and De Jonge (2004). Detailed
procedure regarding how to calculate the EOS system is discussed in the following.
Vapor pressure As we discussed in the ‘Constitutive laws’ section, vapor pressure

is a key parameter for determining the molar fractions of different components in
each phase. The equilibrium restriction on vapor pressure of pure water is given by
Clausius-Clapeyron equation (Çengel and Boles 1994).

PwGvapor(T ) = P0 exp
[(

1
T0

− 1
T

) hwGM
w

R

]
(40)

where hwG is enthalpy of vaporization,Mw is molar mass of water. P0 represents the vapor
pressure of pure water at the specific Temperature T0. In our model, we choose T0 =
373K,P0 = 101, 325Pa. An alternative method is using the Antoine equation, written as

log10(PwGvapor(T )) = A − B
C + T

(41)

with A, B, and C as the empirical parameters. Details regarding this formulation can be
found in Class et al. (2002).
Specific enthalpy Specific enthalpy hα [J mol−1] is the enthalpy per unit mass. Accord-

ing to Eq. 6, we need to know the specific enthalpy of a certain phase. In particular, since
component-based mass balance is considered, we calculate the phase enthalpy as the sum
of mole (mass) specific enthalpy of each component in this phase. Here we assume that
the energy of mixing is ignored. For instance, the water-air system applied in the second
benchmark is formulated as

hG = hairG Xair
G + hwvap

G Xwvap
G (42)

hL = hairL Xair
L + hwliq

L Xwliq
L (43)

Here hairG is the specific enthalpy of air in gas phase, hwvap
G is specific enthalpy of vapor

water in gas phase, hairL represents the specific enthalpy of the air dissolved in the liquid
phase, while hwliq

L donates the specific enthalpy of the liquid water in liquid phase. While
Xair
G , Xwvap

G , Xair
L and Xwliq

L represent molar fraction [-] of each component (air and water)
in the corresponding phase (gas and liquid).
Henry coefficientWe assumeHenry’s Law is valid under the non-isothermal condition.

Therefore Henry coefficient is a secondary variable. In the water-air system, it can be
defined as (Kolditz and De Jonge 2004)

Hh
W (T) = (0.8942 + 1.47 exp(−0.04394T)) × 10−10 (44)

with T the temperature value in ◦C.
Heat conductivity Since the local thermal equilibrium is assumed, the heat conduc-

tivity λpm [W m−1 K−1] of the fluid-containing porous media is averaged from the heat
conductivities of the fluid phases and the solid matrix. Thus, it is a function of saturation
only.
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λpm = λSL=SG=0
pm + √

SL(λSL=1
pm − λSL=0

pm ) + √
SG(λSG=1

pm − λSG=0
pm ) (45)

Fugacity When the thermal equilibrium is reached, the chemical potentials of compo-
nent i in gas and liquid phase equal with each other. This equilibrium relationship can be
formulated as the equation of chemical potential ν

ν
(i)
G (PG,X(i)

L ,X(i)
G ,T) = ν

(i)
L

(
PL,X(i)

L ,X(i)
G ,T

)

In our model, the fugacity was applied instead of chemical potential. The above
relationship is then transformed to the equivalence of component fugacities, where

f (i)
G = f (i)

L

holds for each component i in each phase. In order to compute the fugacity of a
component in a particular phase, the following formulation is used

f (i)
α = PαX(i)

α φ(i)
α (46)

where φ
(i)
α is the respective fugacity coefficient of component.

Numerical scheme
Numerical solution of EOS

Physical constraints of EOS

Since the pore space should be fully occupied by either or both the gas and liquid phases,
the sum of phase saturation should equal to one. By definition, the saturation for each
phase should be no less than zero and no larger than one. This constraint is summarized
as ∑

α

Sα = 1 ∧ Sα > 0 (α ∈ G, L) (47)

Similarly, the sum of the molar fraction for all components in a single phase should also
be in unity, and this second constraint can be formulated as∑

i
X(i)
G = 1 ∧

∑
i
X(i)
L = 1 with X(i)

G > 0 ∧ X(i)
L > 0 (i ∈ h,w) (48)

Combining these constraints, we have

S = 0 ∧ Xh
L ≤ Xm(P, 0,T) (49)

0 ≤ S ≤ 1 ∧ Xm(P, S,T) − Xh
L = 0,Xh

G − XM(P, S,T) = 0 (50)

S = 1 ∧ Xh
G ≥ XM(P, 1,T) (51)

For the Eqs. 49 to 51, they contain both equality and inequality relationships, which
impose challenges for the numerical solution. In order to solve it numerically, we intro-
duce a minimum function (Kanzow 2004; Kräutle 2011), to transform the inequalities. It
is defined as

Ψ (a, b) := min{a, b} (52)

Combined with Eqs. 49 to 51, they can be transformed to

�(S,Xm(P, S,T) − Xh
L) = 0 (53)
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�(1 − S,Xh
G − XM(P, S,T)) = 0 (54)

SNG(X − Xh
G) + (1 − S)NL(X − Xh

L)

SNG + (1 − S)NL
= 0 (55)

Then Eqs. 53 to 55 formulates the EOS system, which needs to be solved on each mesh
node of the model domain.

Numerical scheme of solving EOS

For the EOS, the primary variables P and X are input parameters and act as the external
constraint. The saturation S, gas and liquid phase molar fraction of the light component
Xh
G and Xh

L are then the unknowns to be solved. Once they have been determined, other
secondary variables can be derived from them. When saturation is less than zero or big-
ger than one, the second argument of the minimization function in Eq. 53 will be chosen.
Then it effectively prevents the saturation value from moving into unphysical value. This
transformation will result in a local Jacobian matrix that might be singular. Therefore, a
pivoting action has to be performed before the Jacobian matrix is decomposed to cal-
culating the Newton step. An alternative approach to handle this singularity is to treat
the EOS system as a nonlinear optimization problem with the inequality constraints. Our
tests showed that the optimization algorithms such as Trust-Region method are very
robust in solving such a local problem, but the calculation timewill be considerably longer,
compared to the Newton-based iteration method.

Numerical solution of the global equation system
In this work, we solve the global governing equation Eqs. 13 to 15 with all the closure
relationships simultaneously satisfied. To handle the non-linearities, a nested Newton
scheme was implemented (see the flow chart in Fig. 1). All the derivatives in the EOS sys-
tem Eqs. 53 to 55 are computed exactly and the local Jacobian matrix is constructed in
an analytical way, while the global Jacobian matrix is numerically evaluated based on the
finite difference method. For the global equations, the time was discretized with the back-
ward Euler scheme, and the spatial discretization was performed with the Galerkin Finite
Element method. In each global Newton iteration, the updated global variables P, X, and
T from the previous iteration were passed to the EOS system, and acted as constraints to
solve for secondary variables. The solution of Eqs. 53 to 55 was performed one after the
other on each mesh node of the model domain.
For Newton iterations, the following convergence criteria was applied.

∥∥Residual(Step(k))∥∥2 ≤ ε (56)

where ‖‖2 denotes the Euclidean norm. A tolerance value ε = 1×10−14 were adopted for
the EOS and 1 × 10−9 for the global Newton iterations.

Handling unphysical values during the global iteration
In the ‘Numerical scheme of solving EOS’ section, we have discussed the procedure of
handling physical constraint of the EOS system. However, during the global iterations,
if the initial value of X is small enough, it may happen that X ≤ 0 can appear. Since
the negative value of X would cause failures of further iteration, it is necessary to force
the non-negativity constraint on X. To achieve this, a widely used method is extending the
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Fig. 1 Scheme of the algorithm for global equation system

definition of the physical variables such as NG, NL for X < 0, as was done in (Marchand
et al. 2013), (Marchand and Knabner (2014), and (Abadpour and Panfilov 2009). In our
implementation, we chose an alternative and more straightforward method, which is
adding a damping factor in each global Newton iteration when updating the unknown
vector. The damping factor δ are chosen as follows,

1
δ

= max{1, 2 ∗ �P(j)
P(j)

, 2 ∗ �X(j)
X(j)

, 2 ∗ �T(j)
T(j)

} (57)

where P(j), X(j) and T(j) denote pressure/molar fraction/temperature at node j.

Results and Discussions
In our work, the model verification was carried out in two separate cases, one under
isothermal and the other under non-isothermal conditions. In the first case, a simple
benchmark case was proposed by GNR MoMaS (Bourgeat et al. 2009). We simulated the
same H2 injection process with the extended OpenGeoSys code (Kolditz et al. 2012), and
compared our results against those from other code (Marchand and Knabner 2014). For
the non-isothermal case, there exists no analytical solution, which explicitly involves the
phase transition phenomenon. Therefore, we compared our simulation result of the clas-
sical heat pipe problem to the semi-analytical solution from Udell and Fitch (1985). This
semi-analytical solution was developed for the steady state condition without the consid-
eration of phase change phenomena. Despite of this discrepancy, the OpenGeoSys code
delivered very close profile as by the analytical approach.
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Benchmark I: isothermal injection of H2 gas

The background of this benchmark is the production of hydrogen gas due to the corro-
sion of the metallic container in the nuclear waste repository. Numerical model is built to
illustrate such gas appearance phenomenon. Themodel domain is a two-dimensional hor-
izontal column representing the bentonite backfill in the repository tunnel, with hydrogen
gas injected on the left boundary. This benchmark was proposed in the GNR MoMaS
project by French National Radioactive Waste Management Agency. Several research
groups has made contributions to test the benchmark and provided their reference solu-
tions (Ben Gharbia and Jaffré 2014; Bourgeat et al. 2009; Marchand and Knabner 2014;
Neumann et al. 2013). Here we adopted the results proposed in Marchand’s paper
Marchand and Knabner 2014 for comparison.

Physical scenario

Here a 2D rectangular domain � =[ 0, 200]×[−10, 10] m (see Fig. 2) was considered
with an impervious boundary at �imp =[ 0, 200]×[−10, 10] m, an inflow boundary at
�in = {0}×[−10, 10] m, and an outflow boundary at �out = {200}×[−10, 10] m. The
domain was initially saturated with water, hydrogen gas was injected on the left-hand-
side boundary within a certain time span ([ 0, 5 × 104century]). After that the hydrogen
injection stopped and no flux came into the system. The right-hand-side boundary is
kept open throughout the simulation. The initial condition and boundary conditions were
summarized as

• X(t = 0) = 10−5 and PL(t = 0) = PoutL = 106 [ Pa] on �.
• qw · ν = qh · ν = 0 on �imp.
• qw · ν = 0, qh · ν = Qh

d = 0.2785 [mol century−1m−2] on �in.
• X = 0 and Pl = PoutL = 106 [ Pa] on �out .

Model parameters and numerical settings

The capillary pressure Pc and relative permeability functions are given by the
van-Genuchten model (Van Genuchten 1980).

Pc = Pr
(
S− 1

m
le − 1

) 1
n

KrL = √
Sle

(
1 −

(
1 − S

1
m
le

)m)2

KrG = √
1 − Sle

(
1 − S

1
m
le

)2m

Fig. 2 Geometry and boundary condition for the H2 injection benchmark
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where m = 1 − 1
n , Pr and n are van-Genuchten model parameters and the effective

saturation Sle is given by

Sle = 1 − Sg − Slr
1 − Slr − Sgr

(58)

here Slr and Sgr indicate the residual saturation in liquid and gas phases, respectively.
Values of parameters applied in this model are summarized in Table 2.
We created a 2D triangular mesh here with 963 nodes and 1758 elements. The mesh

element size varies between 1m and 5m. A fixed time step size of 1 century is applied. The
entire simulated time from 0 to 104 centuries were simulated. The entire execution time
is around 3.241 × 104s.

Results and analysis

The results of this benchmark are depicted in Fig. 3. The evolution of gas phase satura-
tion and the gas/liquid phase pressure at the inflow boundary �in over the entire time
span are shown. In additional, we compare results from our model against those given
in Marchand’s paper (Marchand and Knabner 2014). In Fig. 3, solid lines are our simula-
tion results while the symbols are the results from Marchand et al. It can be seen that a
good agreement has been achieved. Furthermore, the evolution profile of the gas phase
saturation Sg , the liquid phase pressure PL, and the total molar fraction of hydrogen X
are plotted at different time (t = 150, 1 × 103, 5 × 103, 6 × 103 centuries) in Fig. 4a−c,
respectively.
By observing the simulated saturation and pressure profile, the complete physical

process of H2 injection can be categorized into five subsequent stages.
1) The dissolution stage: After the injection of hydrogen at the inflow boundary, the

gas first dissolved in the water. This was reflected by the increasing concentration of
hydrogen in Fig. 4c. Meanwhile, the phase pressure did not vary much and was kept
almost constant (see Fig. 4b).
2) Capillary stage: Given a constant temperature, the maximal soluble amount of H2

in the water liquid is a function of pressure. In this MoMaS benchmark case, our simula-
tion showed that this threshold value was about 1 × 10−3 mol H2 per mol of water at a
pressure of 1× 106 [Pa]. Once this pressure was reached, the gas will emerge and formed
a continuous phase. As shown in Fig. 4a, at approximately 150 centuries, the first phase
transition happens. Beyond this point, the gas and liquid phase pressure quickly increase,
while hydrogen gas is transported towards the right boundary driven by the pressure and
concentration gradient. In the meantime, the location of this phase transition point also
slowly shifted towards the middle of the domain.

Table 2 Fluid and porous medium properties applied in the H2 migration benchmark

Parameters Symbol Value Unit

Intrinsic permeability K 5 × 10−20 [m2]

Porosity � 0.15 [-]

Residual saturation of liquid phase Slr 0.4 [-]

Residual saturation of gas phase Sgr 0 [-]

Viscosity of liquid μl 10−3 [Pa · s]
Viscosity of gas μg 9 × 10−6 [Pa · s]
van Genuchten parameter Pr 2 × 106 [Pa]

van Genuchten parameter n 1.49 [-]



Huang et al. Geothermal Energy  (2015) 3:13 Page 15 of 23

Fig. 3 Evolution of pressure and saturation over time

3) Gas migration stage: The hydrogen injection process continued until the 5000th
century. Although the gas saturation continues to increase, pressures in both phases begin
to decline due to the existence of the liquid phase gradient. Eventually, the whole system
will reach steady state with no liquid phase gradient.
4) Recovery stage: After hydrogen injection was stopped at the 5000th century, the

water came back from the outflow boundary towards the left, which was driven by
the capillary effect to occupy the space left by the disappearing gas phase. During this
stage, the gas phase saturation begins to decline, and both phase pressures drop even
below the initial pressure. The whole process will not stop until the gas phase completely
disappeared.
5) Equilibrium stage: After the complete disappearance of the gas phase, the satura-

tion comes to zero again, and the whole system will reach steady state, with pressure and
saturation values same as the ones given in the initial condition.

Benchmark II: heat pipe problem

To verify our model under the non-isothermal condition, we adopted the heat pipe prob-
lem proposed by Udell and Fitch (1985). They have provided a semi-analytical solution for
a non-isothermal water-gas system in porous media, where heat convection, heat conduc-
tion as well as capillary forces were considered. A heater installed on the right-hand-side
of the domain generated constant flux of heat, and it was then transferred through the
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Fig. 4 Evolution of (a) gas phase saturation, (b) liquid phase pressure, and (c) total hydrogen molar fraction
over the whole domain at different time

porous media by conduction, as well as the enthalpy transport of the fluids. The semi-
analytical solution was developed for the steady state condition, and the liquid phase
flowed in the opposite direction to the gas phase. If gravity was neglected, the system
can be simplified to a system of six ordinary differential equations (ODE), the solution
of which was then be obtained in the form of semi-analytical solution. Detailed deriva-
tion procedure is available in (Helmig 1997), and the parameters used in our comparison
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are listed in Table 3. Interested readers may also refer to the supplementary material
regarding how this solution was deducted (see Additional file 1-6).

Physical scenario

As shown in Fig. 5, the heat pipe was represented by a 2D horizontal column (2.25 m in
length and 0.2 m in diameter) of porous media, which was partially saturated with a liquid
phase saturation value of 0.7 at the beginning. A constant heat flux (QT = 100 [W m−2])
was imposed on the right-hand-side boundary �in, representing the continuously operat-
ing heating element. At the left-hand-side boundary �out , Dirichlet boundary conditions
were imposed for Temperature T = 70 ◦C, liquid phase pressure PG = 1×105 [ Pa], effec-
tive liquid phase saturation Sle = 1, and air molar fraction in the gas phase Xa

G = 0.71.
Detailed initial and boundary condition are summarized as follows.

• P(t = 0) = 1 × 105 [ Pa], SL(t = 0) = 0.7, T(t = 0) = 70 [◦ C] on the entire
domain.

• qw · ν = qh · ν = 0 on �imp.
• qw · ν = qh · ν = 0, qT · ν = QT on �in.
• P = 1 × 105 [ Pa], SL = 0.7, T = 70 [◦ C] on �out .

Model parameters and numerical settings

For the capillary pressure−saturation relationship, van Genuchten model was applied.
The parameters used in the van Genuchten model are listed in Table 3. The water−air
relative permeability relationships were described by the Fatt and Klikoffv formulations
(Fatt and Klikoff Jr 1959).

KrG = (1 − Sle)3 (59)

KrL = S3le (60)

where Sle is the effective liquid phase saturation, referred to Eq. 58.

Table 3 Parameters applied in the heat pipe problem

Parameters name Symbol Value Unit

Permeability K 10−12 [m2]

Porosity � 0.4 [-]

Residual liquid phase saturation Slr 0.4 [-]

Heat conductivity of fully saturated
porous medium

λ
Sw=1
pm 1.13 [W m−1 K−1]

Heat conductivity of dry porous
medium

λ
Sw=0
pm 0.582 [W m−1 K−1]

Heat capacity of the soil grains cs 700 [J kg−1 K−1]

Density of the soil grain ρs 2600 [kg m−3]

Density of the water ρw 1000 [kg m−3]

Density of the air ρ 0.08 [kg m−3]

Dynamic viscosity of water μw 2.938 × 10−4 [Pa · s]
Dynamic viscosity of air μa

g 2.08 × 10−5 [Pa · s]
Dynamic viscosity of steam μw

g 1.20 × 10−5 [Pa · s]
Diffusion coefficient of air Da

g 2.6 × 10−5 [m2 s−1]

van Genuchten parameter Pr 1 × 104 [Pa]

van Genuchten parameter n 5 [-]
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Fig. 5 Geometry of the heat pipe problem

We created a 2D triangular mesh here with 206 nodes and 326 elements. The averaged
mesh element size is around 6m. A fixed size time stepping scheme has been adopted,
with a constant time step size of 0.01 day. The entire simulated time from 0 to 104 day
were simulated.

Results

The results of our simulation were plotted along the central horizontal profile over the
model domain at y = 0.1 m, and compared against semi-analytical solution. Tempera-
ture and saturation profiles at day 1, 10, 100, 1000 are depicted in Fig. 6a, b respectively.
As the heat flux was imposed on the right-hand-side boundary, the temperature kept
rising there. After 1 day, the boundary temperature already exceeded 100 ◦C, and the
water in the soil started to boil. Together with the appearance of steam, water saturation

Fig. 6 Evolution of (a) temperature and (b) liquid phase saturation over the whole domain at different time
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on the right-hand-side began to decrease. After 10 days, the boiling point has almost
moved to the middle of the column. Meanwhile, the steam front kept boiling and shifted
to the left-hand-side, whereas liquid water was drawn back to the right. After about
1000 days, the system reached a quasi-steady state, where the single phase gas, two
phase and single phase liquid regions co-exist and can be distinguished. A pure gas
phase region can be observed on the right and liquid phase region dominates the left
side.

Discussion

Analysis of the differences in benchmark II

From Fig. 6a, b, some differences can still be observed in comparison to the semi-
analytical solution. Our hypothesis is this difference originates from the capillary
pressure−saturation relationship adopted in our numerical implementation. In the orig-
inal formulation of Udell and Fitch (1985), the Leverett model was applied to produce
the semi-analytical solution. It is assumed that the liquid and gas are immiscible and
thus there is no gas component dissolved in the liquid phase, and vice versa. In our
work, we cannot precisely follow the same assumption, since the dissolution of chemi-
cal component in both phases is a requirement for the calculation of phase equilibrium.
When considering phase change, we need to allow the saturation S to drop below the
residual saturation, so that the evaporation as well as the condensation process can
occur. In the traditional van Genuchten model, infinite value of capillary pressure may
occur in the lower residual saturation region. Therefore we have made regularization
that allows water saturation to fall below the residual saturation, as demonstrated in
Fig. 7. Every time the capillary pressure needs to be evaluated, an if-else judgment is
performed.

if Slr < S < 1 then

P̄c(S) = Pc(S)
(61)

else
if 0 < S < Slr then

P̄c(S) = Pc(Slr) − P′
c(Slr)(S − Slr)

(62)

end
end

Here P̄c(S) indicates the modified van Genuchtem model, and P′
c(Slr) represents the

slope of Pc-S curve at the point of residual water phase saturation. The abovemodified van
Genuchten model approximates the same behavior as the original Leverett one in major-
ity part of the saturation region (see Fig. 7), yet still allowing the phase change behavior.
However, it is not exactly same as the one in the semi-analytical solution. This is consid-
ered to be the reason why the quasi steady-state profile by our numerical model (Fig. 6)
deviates from the analytical one.
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Fig. 7 The regularization of the van Genuchten model

Continuity of the global system and convergence of the iteration

In this work, we have only considered the homogeneous medium, where the primary
variables of P and X are always continuous over the entire domain. For some primary
variables, their derivatives in the governing Eqs. (13)−(15) are discontinuous at locations
where the phase transition happens, i.e., X = Xm(P, S = 0,T) and X = XM(P, S =
1,T). For instance, ∂S

∂X and ∂S
∂P might produce singularities at S = 0 and S = 1, and they

can cause trouble on the conditioning of the global Jacobian matrix. In our simulation, a
damped Newton iterations with line search has been adopted (see the ‘Handling unphys-
ical values during the global iteration’ section). We observed that such derivative terms
will result in an increased number of global Newton iterations, and the linear iteration
number to solve the Newton step as well. It does not alter the convergence of the Newton
scheme, as long as the function is Lipschitz continuous.
We are aware of the fact that this issue may be more difficult to handle for the het-

erogeneous media, where the primary variable P and X could not be directly applied any
more because of the non-continuity over the heterogeneous interface (Park et al. 2011).
In that case, choosing the primary variables which are continuous over any interface of
the medium is a better option. Based on the analysis by Ern and Mozolevski (2012), if we
assume Henry’s law is valid, concentration, or in another word, the molar or mass fraction
of the hydrogen in the liquid phase ρh

L (Xh
L), gas/liquid phase pressure PG/PL, as well as

the capillary pressure are all continuous over the interface. Therefore, they are the poten-
tial choices of primary variable which can be applied in the heterogeneous media (see
(Angelini et al. 2011); (Neumann et al. 2013), and (Bourgeat et al. 2013)). We are currently
investigating these options and will report on the results in subsequent work.

Conclusions
In this work, based on the persistent primary variable algorithm proposed by Marchand
et al. (2013), we extended the isothermal multi-phase flow formulation to the non-
isothermal condition. The extended governing equation is based on the mass balance of
each chemical component and is nonlinearly coupled with the non-isothermal EOS. The
numerical scheme has been implemented into the open source code OpenGeoSys. The
verification of our model were carried out in two benchmark cases.
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• For the GNR MoMaS (Bourgeat et al. 2009) benchmark (‘Benchmark I: isothermal
injection of H2 gas’ section), the extended model is capable of simulating the
migration of H2 gas including its dissolution in aqueous phase. The simulated results
fitted well with those from other codes (Marchand et al. 2013; Marchand and
Knabner 2014).

• For the non-isothermal benchmark, we simulated the heat pipe problem and verified
our result against the semi-analytical solution (‘Benchmark II: heat pipe problem’
section). Furthermore, our numerical model extended the original heat pipe problem
to include the phase change behavior.

Currently, we are working on the incorporation of equilibrium reactions, such as the
mineral dissolution and precipitation, into the EOS system. As our global mass-balance
equations are already component based, one governing equation can be written for each
basis component. Pressure, temperature, and molar fraction of the chemical components
can be chosen as primary variables. Inside the EOS problem, the amount of secondary
chemical components can be calculated based on the result of basis, which can further
lead to the phase properties as density and viscosity. The full extension of including
temperature-dependent reactive transport system will be the topic of a separate work in
the near future.

Nomenclature
Greek symbols
ε Tolerance value for Newton iteration. [-]
λT Heat Conductivity. [W m−1 K−1]
μα Viscosity in α phase. [Pa · s]
νiα Chemical potential of i-component in α phase. [Pa]
� Porosity. [-]
φi

α fugacity coefficient of i-component in α phase. [-]
ρi

α Mass density of i-component in α phase. [Kg m−3]

Operators

∧ Logical "and"
‖‖2 Euclidean norm
Ψ (a, b) Minimum function

Roman symbols

g Vector for gravitational force. [m s−2]
cpα Specific heat capacity in phase α at given pressure. [J Kg−1 K−1]
cS Specific heat capacity of soil grain. [J Kg−1 K−1]
Di

α Diffusion coefficient of i-component in phase α. [m2 s−1]
Fi Mass source/sink term for i-component. [Kg m−3 s−1]
f iα Fugacity of i-component in α phase. [Pa]
Hh
W Henry coefficient. [mol Pa−1 m−3]

hα Specific enthalpy. [J Kg−1]
jiα Diffusive mass flux of i-component in α phase. [mol m−2 s−1]
K Intrinsic Permeability. [m2]
Nα Molar density in α phase. [mol m−3]
Pα Pressure in α phase. [Pa]
PwGvapor Vapor pressure of pure water. [Pa]
Pc Capillary pressure. [Pa]
QT Heat source/sink term. [W s−2]
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R Universal Gas Constant. [J mol−1 K−1]
Sαr Residual saturation in α phase. [-]
Sα Saturation in α phase. [-]
Sle Effective saturation. [-]
T Temperature. [K]
uα Specific internal energy. [J Kg−1]
Vα Volume in α phase. [m3]
vα Darcy velocity in α phase. [m s−1]
X Total molar fraction of light component in two phases. [-]
Xi

α Molar Fraction of i-component in α phase. [-]

Additional files

Additional file 1: This document introduces how this analytical solution is deducted.

Additional file 2: This is the main matlab script file, which will be executed to produce the analytical solution.

Additional file 3: This file constructs the four coupled differential equations.

Additional file 4: This file calculates the relative permeability of gas phase.

Additional file 5: This file calculates the relative permeability of liquid phase.

Additional file 6: This file calculates the capillary pressure, with water saturation as the input parameter.
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