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Abstract

Enhanced (or engineered) geothermal systems (EGS) have evolved from the hot dry
rock concept, implemented for the first time at Fenton Hill in 1977. This paper
systematically reviews all of the EGS projects worldwide, based on the information
available in the public domain. The projects are classified by country, reservoir type,
depth, reservoir temperature, stimulation methods, associated seismicity, plant
capacity and current status. Thirty five years on from the first EGS implementation,
the geothermal community can benefit from the lessons learnt and take a more
objective approach to the pros and cons of ‘conventional’ EGS systems.

Keywords: Enhanced geothermal system, Engineered geothermal system, Hot dry
rock, Conventional EGS, EGS database worldwide

Review
The currently used term ‘enhanced or engineered geothermal system’ (EGS) has its

roots in the early 1970s when a team from Los Alamos National Laboratories began

the hot dry rock (HDR) project at Fenton Hill (Cummings and Morris 1979; Tester

et al. 1989; Brown 1997; Duchane 1998). The concept is described in Potter et al.

(1974). HDR was also known as hot fractured rock because of either the need to frac-

ture the virtually impermeable formations or the presence of natural fractures in the

hot reservoir (Wyborn et al. 2005; Goldstein et al. 2011) or as hot wet rock (HWR)

when it was established that the formations were not completely dry but contained

some fluids. The European EGS project at Soultz-sous-Forêts in France is an example

of a HWR reservoir (Duchane 1998). Further nomenclature encountered in the litera-

ture include stimulated geothermal system, deep heat mining (Häring and Hopkirk

2002; Häring 2007) and deep earth geothermal. All of the above usually imply the use

of petrothermal systems (Ilyasov et al. 2010; Gebo NDS 2012a).

Schulte et al. (2010) defined the typical geological settings for EGS, varying from ig-

neous (e.g. Iceland), metamorphic (e.g. Lardarello, Italy), magmatic (e.g. Soultz, France)

and sedimentary (e.g. Groß Schönebeck and Horstberg, Germany).

According to Potter et al. (1974), the most suitable rock type for HDR is granite or

other crystalline basement rock; temperatures should vary from 150°C to 500°C at

depths in the order of 5 to 6 km, with an average flow rate over a 10-year reservoir

lifetime of 265 l/s, with hydraulic fracturing achieving a contact surface area of ap-

proximately 16 km2, an average thermal capacity of 250 MWth that could be obtained

from the surface heat exchanger, and with pressurized water entering at 280°C and
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leaving at 65°C. Based on these criteria, the potential electrical power that could be

generated might amount to 50 MWe at a net efficiency of 20%.

Over the years, different definitions of EGS have been proposed, covering a broad

variety of rock types, depth, temperature, reservoir permeability and porosity, type of

stimulation technique involved, etc. Below are four examples of recent EGS definitions

in the public domain.

1. The Massachusetts Institute of Technology (MIT) led an interdisciplinary panel

which defined EGS as ‘engineered reservoirs that have been created to extract

economical amounts of heat from low permeability and/or porosity geothermal

resources. For this assessment, this definition has been adapted to include all

geothermal resources that are currently not in commercial production and require

stimulation or enhancement. EGS would exclude high-grade hydrothermal but

include conduction dominated, low permeability resources in sedimentary and

basement formations, as well as geopressured, magma and low grade, unproductive

hydrothermal resources. Co-produced hot water from oil and gas production is

included as an unconventional EGS resource type that could be developed in the

short term and possibly provide a first step to more classical EGS exploitation’

(MIT et al. 2006a).

2. The Australian Geothermal Reporting Code Committee considered EGS as ‘a body

of rock containing useful energy, the recoverability of which has been increased by

artificial means such as fracturing’ (AGRCC 2010).

3. Williams et al. (2011) proposed that ‘EGS comprise the portion of a geothermal

resource for which a measureable increase in production over its natural state is or

can be attained through mechanical, thermal, and/or chemical stimulation of the

reservoir rock. In this definition, there are no restrictions on temperature, rock type

or pre-existing geothermal exploitation’.

4. The BMU (2011) defines enhanced geothermal systems as creating or enhancing a

heat exchanger in deep and low permeable hot rocks using stimulation methods.

Following BMU's definition, EGS embraces not only HDR but also deep heat

mining, hot wet rock, hot fractured rock, stimulated geothermal systems, and

stimulated hydrothermal systems.

Clearly, the geothermal community lacks a universal definition of EGS, which may

simply be taken as ‘unconventional geothermal systems’, diverging significantly from

the initial HDR concept. This lack of clarity may constitute a potential obstacle to the

implementation of tailored subsidy programmes.

In this study, the MIT definition is adopted with the only difference that geopres-

sured and magmatic systems and also co-produced hot water from hydrocarbon

wells are excluded. The reasons for this particular choice are that the MIT report

was (and still is) regarded as a milestone report towards the development of EGS;

also, from an engineering point of view, it is perhaps one of the most comprehensive

definitions. On the other hand, it does not enter into the details of the different

stimulation approaches and associated consequences for different EGS systems.

Recently, for example, Jung (2013) has reconstructed the background to contempor-

ary EGS: from the original HDR concept based on multi-zone hydraulic fracturing in
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competent crystalline formations, through that of open-hole massive injection in

naturally fractured crystalline formations and finally to the proposed multi-zone

massive injection (with the objective of generating multiple wing cracks) in naturally

fractured crystalline formations. As this review does not aim at a project-by-project

evaluation of the geomechanics that occur during EGS stimulation, the modified

MIT definition is considered to be suitable for generating the database proposed in

this study.

Geopressured and magma systems were left out from this review because they

typically have been excluded from past EGS cataloguing attempts, such as those

proposed by European Geothermal Energy Council (EGEC) (2012) and GtV (2013).
EGS milestones

During the last four decades, there have been some key milestones towards the devel-

opment of EGS for heat production and electricity generation. The information that

follows is based on the report by Tenzer (2001), supplemented by additional

information:

� 1970: Proposals for the first EGS worldwide in Fenton Hill, Los Alamos, USA.

� 1973: First EGS experiments in Fenton Hill.

� 1974 to 1977: Feasibility studies for EGS projects in Japan.

� 1975: Start of preparations for the first scientific EGS pilot plant in Bad Urach,

Germany.

� Since 1977: EGS feasibility studies for shallow depths at Falkenberg, Germany,

Camborne School of Mines, Cornwall in the UK and Le Mayet, France.

� 1977: EGS Bad Urach - drilling starts.

� 1980 to 1986: EGS Bad Urach - deepening of the borehole to 3,488 m at 147°C and

hydraulic tests for single borehole system.

� 1984 to 1985: Start of EGS; Neustadt-Glewe, as a pilot project for low enthalpy

energy; to date, this is the warmest accessed hot water reservoir in Northern

Germany.

� 1986: Start of the German-French EGS project at Soultz-sous-Forêts, France, as a

joint European research EGS pilot plant.

� 1986 to 1991: First EGS experiments in Hijori and other locations in Japan.

� 1987: EGS Soultz - began drilling the first borehole to 2,000 m at 140°C and started

the investigation of the crystalline basement in the Rhine-Graben.

� 1989: EGS Soultz - UK joins the project; formation of an industrial consortium for

organized planning and operation of an EGS project in Europe.

� 1990: EGS Soultz - drilling of a second 2,000-m deep borehole and deepening of

the first borehole to 3,500 m depth (at 160°C); geothermal reservoir identification;

the second borehole was used as seismic observation borehole.

� 1991 to 1996: EGS Bad Urach - deepening of the borehole to a depth of 4,445 m at

a temperature of 172°C; also performed intense borehole measurement programme.

� 1994–1995: EGS Soultz - deepening of the second borehole to a depth of 3,876 m,

followed by a production test which saw the first steam production in Middle

Europe from crystalline rocks; using massive stimulation and circulation tests
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with seismic monitoring and development of the downhole heat exchanger,

a thermal power of 8 MW was achieved.

� 1996: Start of deep heat mining project in Basel, Switzerland - a pilot project for

EGS in a modern urban environment.

� 1996 to 1997: EGS Bad Urach - development of a downhole heat exchanger by

massive hydraulic fracturing; the largest EGS created worldwide; long-term

(4 months) hydraulic circulation test; a thermal power of 11 MW was achieved.

� 1998 to 2000: EGS Soultz - deepening of the second borehole to 5,060 m at 201°C;

hydraulic stimulation and seismic monitoring.

� 2001: Start of EGS Groß-Schönebeck, Germany, which was the first in situ

geothermal laboratory for developing techniques for the exploration and usage of

geothermal energy.

� 2003: Start of EGS Cooper Basin, Australia - the largest demonstration EGS project

in the world.

� 2003: Test of new single well concept in Genesys Horstberg, Germany.

� 2003: Start of EGS Landau - the first geothermal combined heat power plant to be

connected to the grid; the one and only EGS project in a German town.

� 2004: Start of Unterhaching, Germany, the first geothermal project in the

Bavarian Molasse Basin where, in addition to heat supply, electricity

generation was also achieved; first Kalina power plant in Germany; first

project worldwide with a private sector insurance for geological risk in deep

boreholes.

� 2005: Start of EGS Paralana trying to implement an underground heat exchanger

called ‘heat exchanger within an insulator (HEWI)’ concept (heat exchanger within

the insulator) (Petratherm 2012).

� 2006/2007: Deep heat mining project in Basel stopped due to repeated severe

induced seismicity events; the project was permanently abandoned in 2009.

� 2007: First binary geothermal plant in France at EGS Soultz (with ORC plant).

� 2009: New law for renewable energies in Germany - electricity generation and

supply to the power net gets more financial support.

� 2009: Start of EGS GeneSys Hannover, Germany, as a single well concept.

� 2009: Start of EGS St. Gallen, Switzerland.

� 2010: Implementation of new ‘side-leg’ concept in the EGS project Insheim

(Germany); forked injection well shall reduce induced seismicity

(Insheim 2012).

� 2011: EGS GeneSys Hannover put on hold due to salt deposition in the single well.

� 2011: Guidelines for ‘seismic surveillance’ for Germany published by Bundesverband

Geothermie.

� 2012: Switzerland decides to support deep geothermal projects.

� 2012: EGS Insheim connected to the power net.

� 2013: EGS Habanero successfully commissioned, with generation of 1 MWe of

power; first EGS project in Australia generating electricity.

� 2013: EGS St. Gallen drilling started.

� 2013: EGS St. Gallen put on hold due to induced seismicity events with a

maximum magnitude of 3.6 on the Richter Scale; green light to proceed given by

City Council 5½ weeks later.
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Systematic overview of past and present EGS projects worldwide

The following review should not be considered exhaustive as it is based exclusively

on the information available in the public domain. Yet, to the authors' knowledge, this

is the first public attempt to formally collate a large database of information on EGS

worldwide, from the first HDR project at Fenton Hill in 1974 to date.

The objective of this review is to present key information on past and present EGS

experience worldwide, from which key lessons can be learnt for the future.

The 31 EGS projects identified during this review are classified by country, reservoir

type, depth, reservoir and wellhead temperature, stimulation methods, induced seismi-

city and radioactivity, plant capacity, flow rate and current status.

The 31 projects are divided into four different groups:

Table 1 comprises basic information about EGS projects that are still under develop-

ment. It does not include pending commercial projects that are either at the status of

raising funds (e.g. Munster in Germany and Eden in the UK) or still need governmental

approval.

Tables 2 and 3 present projects that are already in the power generation phase.

Table 4 gives information about experimental projects that were developed to

test single phase of an EGS project rather than the whole process to generate

electricity.

Table 5 presents information on projects that are aimed for electricity generation but

were abandoned due to various problems. Input information was drawn from different

sources available in the public domain; all of which are cited in the titles of the tables.

This grouping criteria allow the reader to have an immediate overview of past vs.

current vs. future EGS activities, better appreciate the challenges faced by EGS (tech-

nical, economic and related to public acceptance), develop a feeling for the level of re-

search and development efforts put into EGS vis-à-vis the desire to achieve worldwide

commercialisation of the concept.

Note that in the tables, ‘microseismic’ refers to seismic activity less than 3.5 on the

Richter scale and is used for those cases when no further details on recorded seismicity

could be found in the literature. See the following paragraphs for more discussions on

induced seismicity in EGS projects.

When ‘thermal capacity’ is quoted next to ‘installed electrical capacity’, this implies a

combined heat and power project.

Under ‘stimulation methods’, the terms ‘hydraulic fracturing’, ‘hydraulic’,

‘hydroshearing’, ‘shear’ and ‘hydraulic stimulation’ are taken directly as quoted by the

cited sources. The authors of this manuscript have not performed an independent

review or assessment of the specific stimulation methods implemented in or planned

for each individual project, as this falls outwith the scope of this broader EGS review.

Overall, the tables above capture a detailed database of 31 EGS projects worldwide.

Based on the tables, the following plots provide a way to extract trends and common

characteristics of EGS.

As illustrated in Figure 1, most of the European EGS projects' reservoir/

bottomhole temperatures are lower than 165°C, with the exception of Lardarello

and Bouillante. Compared to Europe, the average EGS reservoir/bottomhole tem-

peratures in America, Australia and Asia are higher although the well depths are

comparable. Note that only 25 projects are displayed in Figure 1; the remaining 6



Table 1 EGS projects (R&D and commercial) still under development and not generating electricity
Project Start date Location Well depth

(m)
Stimulation
methods

Description Operator Current status Rock type BHT (°C) Seismic
event

Flow rate (l/s)

Le Mayeta 1978 (Cornet
2012)

France (Cornet
2012)

200 to 800
(Cornet 2012)

Hydraulic fracturing
with and without
proppant (Cornet
2012; MIT et al.
2006b)

Research
(Cornet 2012;
MIT et al.
2006b)

Not known Not known Granite (Cornet
2012)

22 (Wyborn
2011)

Microseismic,
not felt on
surface
(Cornet 2012)

5.2 (Wyborn
2011)

Genesys
Hannover

2009
(Zimmermann
et al. 2009)

Germany
(Zimmermann
et al. 2009)

3,900
(Zimmermann
et al. 2009)

Hydraulic fracturing
(Zimmermann et al.
2009)

Demonstrate
single well
concepts
(Zimmermann
et al. 2009)

Federal
Ministry of
Economics
and
Technology
(Zimmermann
et al. 2009)

Salt deposition has
been removed (BGR
2013)

Bunter sandstone
(Zimmermann
et al. 2009)

160
(Blöscher
et al. 2012)

Microseismic
(1.8 M)
(Huenges
2010)

7 (planned)
(Zimmermann
et al. 2009)

Groß
Schönebeck

2000
(Zimmermann
et al. 2009)

Germany
(Zimmermann
et al. 2009)

4,309
(Zimmermann
et al. 2009;
BINE 2012a) to
4,400 (BINE
2012a)

Hydraulic gel
proppant and
fracturing
(Zimmermann et al.
2009; Blöscher et al.
2012; Huenges 2010)
thermal (ENGINE
2008b), chemical
(Henninges et al.
2012)

1st in situ
geothermal
laboratory, EGS
research
(Zimmermann
et al. 2009)

GFZ, Schmidt
+ Clemens
GmbH + Co.
KG (BINE
2012a)

Production-injection
experiment and data
interpretation and
modelling finished
(Feldbusch et al.
2013)

Sandstone and
andesitic volcanic
rocks
(Zimmermann
et al. 2009;
Blöscher et al.
2012)

145
(Blöscher
et al. 2012)

Negligible
(max, −1.8 to
−1.0M)
(Blöscher
et al. 2012)

20 (Blöscher
et al. 2012)

Mauerstetten 2011 (Schrage
et al. 2012a)

Germany
(Schrage et al.
2012a)

4,545 (Exorka
2013)

Chemical (Schrage
et al. 2012b);
hydraulic
(Informationsportal
Tiefe Geothermie
2013a)

Research
(Schrage et al.
2012b)

Exorka GmbH,
GFZ, TUBAF
(Schrage et al.
2012a)

Seismic monitoring
system installed
(Informationsportal
Tiefe Geothermie
2013a); next step,
hydraulic stimulation
(Informationsportal
Tiefe Geothermie
2013a)

Limestone
(Schrage et al.
2012a)

130 (Schrage
et al. 2012a)

Unknown Unknown

St. Gallen 2009
(Geothermie
Stadt St.
Gallen 2013a)

Switzerland
(Geothermie
Stadt St.
Gallen 2013a)

4,450
(Geothermie
Stadt St.
Gallen 2013a)

Chemical and
hydraulic
(Geothermie Stadt St.
Gallen 2013a)

Commercial:
heat and
power
(Geothermie
Stadt St. Gallen
2013a)

ITAG Tiefbohr
GmbH
(Geothermie
Stadt St.
Gallen 2013a)

Production test
interrupted due to
pump failure and
resulting seismic
event (Geothermie
Stadt St. Gallen
2013a)

Malm, shell
limestone
(Geothermie
Stadt St. Gallen
2013a)

130 to 150
(estimated)
(Geothermie
Stadt St.
Gallen
2013a)

3.5 M
(Geothermie
Stadt St.
Gallen 2013a)

(Geothermie
Stadt St.
Gallen 2013a)
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Table 1 EGS projects (R&D and commercial) still under development and not generating electricity (Continued)

Newberry 2010
(Cladouhos
et al. 2012)

USA
(Cladouhos
et al. 2012)

3,066 (BLM
2012)

Hydroshearing,
multi-zone isolation
techniques
(Cladouhos et al.
2012)

Demonstration
for EGS
stimulation/
research
(Cladouhos
et al. 2012)

AltaRock
Energy,
Davenport
Newberry
(Cladouhos
et al. 2012)

Stimulation started
successfully
(Informationsportal
Tiefe Geothermie
2012)

Volcanic rocks
(Fittermann 1988)

315
(Cladouhos
et al. 2012)

Microseismic
(Cladouhos
et al. 2012)

Unknown

Northwest
Geysers

In 1980s
(Garcia et al.
2012)

USA (Romero
et al. 1995)

3,396 (Garcia
et al. 2012)

Thermal fracturing
(Walters 2013)

Demonstration/
research
(Garcia et al.
2012)

Calpine
Corporation
(Garcia et al.
2012)

Stimulation stage (5
MW of potential
production) (Walters
2013)

Metasedimentary
rocks (greywacke)
(Romero et al.
1995; Garcia et al.
2012)

About 400
(Garcia et al.
2012)

Microseismic
(0.9 to 2.87
M) (Garcia
et al. 2012;
Walters 2013)

9.70 (Garcia
et al. 2012)

Paralana 2005
(Petratherm
2012)

Australia
(Petratherm
2012)

4,003
(Petratherm
2012)

Hydraulic
(Petratherm 2012)

Commercial
power
development
(Petratherm
2012)

Petratherm,
Beach Energy
(Petratherm
2012)

Drilling of Paralana 3,
submit funding
application
(Petratherm 2012)

Metasediments,
granite
(Petratherm 2012)

171
(Petratherm
2012)

Microseismic
≤2.6 M
(Petratherm
2012)

Up to 6
(ENGINE
2008b)

GFZ, German Research Centre for Geosciences; TUBAF, Technische Universität und Bergakademie Freiberg (Germany); BHT, bottomhole temperature; aNote that little and contrasting information was found in the
open domain concerning the project ‘Le Mayet’. Some sources say that it was operational from 1984 till 1987 (Evans 2011). Others (MIT et al. 2006b) report that it was still ongoing as of 2006 and having a BHT of 33°C
instead of the 22°C reported in the table.
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Table 2 Ongoing EGS projects (R&D and commercial) generating electricity

Project Start date Location Well depth (m) Stimulation
methods

Description Operator Rock type Reservoir
temperature
(°C)

Seismic event

A.

Bruchsal 1,983
(BMU2011)

Germany
(BMU2011)

1,874 to 2,542
(BMU2011)

Unknown Commercial (Enbw 2013) EnBW, EWB (KIT 2013) Bunter Sandstone
(KIT 2013)

123
(Rettenmaier
2012)a;

Microseismic
(KIT 2013)

Landau 2003 (BINE
2012d)

Germany
(Baumgärtner
2012)

3,170 to 3,300
(Baumgärtner
2012)

No stimulation for
producer; hydraulic
for injector
(Baumgärtner
2012)

First implementation of EGS
technology in Germany (BINE
2012d); first and only EGS in
town in (D) (Baumgärtner 2012)

BESTEC, Geox
(Baumgärtner 2012)

Granite
(Lacirignola and
Blanc 2012)

159
(Baumgärtner
2012)a

Microseismic
(≤2.7 M)
(Baumgärtner
2012), felt by
residents

Insheim 2007
(Insheim
2012)

Germany
(Insheim
2012)

3,600 to 3,800
(LGB-rlp 2012)

Yes (Baumgärtner
2012)

New concept, side-leg injection
well (BINE 2012b)

Pfalzwerke geofuture
GmbH (Pfalzwerke-
geofuture 2012; BINE
2012b)

Keuper, perm,
bunter
sandstone,
granite
(Baumgärtner
2012)

165 (LGB-rlp
2012)

M: 2.0 to 2.4
and
microseismic
(Groos et al.
2012)

Neustadt-
Glewe

1984 (BMU
2011)

Germany
(Bracke 2012)

2,320 (Bracke
2012)

Unknown Commercial, pilot plant for low
enthalpy (BMU2011)

WEMAG AG, Stadt
Neustadt-Glewe,
Geothermie
Neubrandenburg GmbH
(BMU2011)

Sandstone (BMU
2011)

99 (GtV 2013)a Unknown

Unterhaching 2004
(BMU2011)

Germany
(Bracke 2012)

3,350 to 3,580
(Bracke 2012)

Acidizing
(BMU2011)

First Kalina power plant in
Germany (BINE 2012c)

Geothermie
Unterhaching GmbH &
Co. KG, Rödl & Partner
GbR (BINE 2012c)

Limestone
(Dumas 2010)

123 (Bracke
2012)a

Unknown

Soultz 1987 (MIT
et al.
2006b)

France
(Genter 2012)

5,093 (MIT et al.
2006d)

Hydraulic fracturing
and acidizing (MIT
et al. 2006d)

Research and demonstration
(Genter 2012)

European cooperation
project (MIT et al.
2006d)

Granite (MIT et al.
2006d)

165 (BMU
2011)

Microseismic (M
= −2 to 2.9)
(Genter 2012)

Bouillante 1963/1996
(Bertini
et al. 2006)

France
(Guadeloupe)
(Bertini et al.
2006)

1,000 to 2,500
(Bertini et al.
2006)

Thermal cracking
(Bertini et al. 2006)

Commercial (Bertini et al. 2006) Geothermie Bouillante,
CFG-Services, BRGM,
ORKUSTOFNUN, COFOR
(Bertini et al. 2006)

Volcanic lavas
and tuffs (Bertini
et al. 2006)

250 to 260
(Bertini et al.
2006)

Microseismic
(Sanjuan et al.
2010)
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Table 2 Ongoing EGS projects (R&D and commercial) generating electricity (Continued)

Altheim 1989
(Pernecker
1999)

Austria
(Bloomquist
2012)

2,165 to 2,306
(Bayerisches
Landesamt für
Wasserwirtschaft
2011)

Acidizing
(Pernecker 1999),
hydraulic
stimulation
(ENGINE 2008b)

Commercial (Pernecker 1999) Municipality of Altheim,
Terrawat (Pernecker
1999)

Limestone
(Bayerisches
Landesamt für
Wasserwirtschaft
2011)

106
(Bloomquist
2012)

Unknown

Lardarello 1970
(Cappetti
2006)
(1904)

Italy (ENGINE
2008b)

2,500 to 4,000
(Bertini et al.
2006)

Hydraulic and
thermal stimulation
(ENGINE 2008b)

Research and demonstration
(Cappetti 2006) and commercial

ENEL Green Power
(Lazzarotto and Sabatelli
2005)

Metamorphic
rocks (ENGINE
2008b)

300 to 350
(ENGINE
2008a)a

≤3.0 M
(Bromley 2012)

Coso 2002
(Häring
2007)

USA (Häring
2007)

2,430 to 2,956
(Julian et al. 2009)

Hydraulic, thermal
and chemical (Rose
et al. 2004)

Research and development
(Häring 2007)

Coso Operating
Company (EGS Coso
2013)

Diorite,
granodiorite,
granite (Rose
et al. 2004)

≥300 (EGS
Coso 2013)

≤2.8 M (Julian
et al. 2009)

Desert Peak 2002 (MIT
2006c)

USA (MIT
et al. 2006c)

About 1,067
(Chabora et al.
2012)

Shear, chemical,
hydraulic (Davatzes
et al. 2012)

Research and development
(Davatzes et al. 2012)

Ormat, GeothermEx (Val
Pierce 2011)

Volcanic and
metamorphic
rocks (Chabora
et al. 2012)

179 to 196
(Chabora et al.
2012)

Microseismic:
−0.03 to 1.7
(Chabora and
Zemach 2013)

Berlín 2001
(Bommer
et al. 2006)

El Salvador
(Rodríguez
2003)

2,000 to 2,380
(Rodríguez 2008)

Hydraulic fracturing
and chemical
(Rodríguez 2003)

Developing EGS project in a
geothermal field (Rodríguez
2003)

Shell International
(Rodríguez 2003), LaGeo
(Bommer et al. 2006)

Volcanic rocks
(Häring 2007)

183 (Bommer
et al. 2006)

≤4.4 M
(Bommer et al.
2006)

Cooper Basin 2003
(Majer
et al. 2007)

Australia
(Majer et al.
2007)

4,421 (Majer et al.
2007)

Hydraulic (Majer
et al. 2007; Holl
2012)

Largest demonstration project in
the world (Stephens and Jiusto
2010)

Geodynamics Ltd.
(Majer et al. 2007;
Geodynamics 2013)

Granite (Majer
et al. 2007)

242 to 278
(Geodynamics
2013)

≤3.7M (Majer
et al. 2007)

Hijiori 1985
(Sasaki
1998)

Japan (Sasaki
1998)

1,805 to 1,910
(Sasaki 1998)

Hydraulic fracturing
(Sasaki 1998)

Developing EGS technologies
(Sasaki 1998)

Japan's new energy
(DiPippo 2012a), NEDO
(Sasaki 1998)

Granodiorite
(Sasaki 1998)

190 (DiPippo
2012a)

Microseismic
(Sasaki 1998)

aReservoir temperature not available, BHT is used instead.
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Table 3 Ongoing EGS projects (R&D and commercial) generating electricity
Project Type of power plant Flow rate (l/s) Distance between

producer and injector
(km)

Installed
electrical
capacity (MWe)

Thermal capacity
(MWth)

Flow assurance problem

B.

Bruchsal Kalina cycle (BMU2011) 28.5 (BMU2011) 1.4 (BMU2011) 0.55 (BMU2011) 5.5 (GtV 2013) High salt contents (100 g/l); high CO2 concentration
(BMU 2011)

Landau Organic Rankine Cycle
(BINE 2012d)

70 to 80 (Baumgärtner
2012)

1.5 (Bracke 2012) Up to 3.6
(Baumgärtner 2012)

2 to 5 (Baumgärtner
2012)

Unknown

Insheim Organic Rankine Cycle
(Informationsportal Tiefe
Geothermie 2013b)

65 to 85 (planned)
(Pfalzwerke-geofuture
2012)

Unknown 4.8 (Pfalzwerke-
geofuture 2012)

6 to 10 (Pfalzwerke-
geofuture 2012)

Unknown

Neustadt-
Glewe

Organic Rankine Cycle
(Bracke 2012)

35 (Bracke 2012) 1.5 (BMU2011) 0.21 (Bracke 2012) 4 (Bracke 2012) High salt content, high gas concentration
(Bracke 2012)

Unterhaching Kalina cycle (BMU 2011) 150 (Bracke 2012) 4.5 (Bracke 2012) 3.36 (Bracke 2012) 38 (Bracke 2012) Unknown

Soultz Organic Rankine Cycle
(BMU 2011)

30 (BMU 2011) 0.6 (BMU 2011) 1.5 (BMU 2011) Non-scheduled (Dumas
2010)

Corrosion due to high salt contents
(BMU 2011)

Bouillante Double and single flash
(Bertini et al. 2006)

150 (Bertini et al. 2006) 0.5 (Bertini et al. 2006) 15 (Bertini et al.
2006)

Unknown Unknown

Altheim Organic Rankine cycle
(Bayerisches Landesamt für
Wasserwirtschaft 2011)

81.7 (Bayerisches
Landesamt für
Wasserwirtschaft 2011)

1.7 (Bayerisches
Landesamt für
Wasserwirtschaft 2011)

1.0 (Bloomquist
2012)

12.4 (Bayerisches
Landesamt für
Wasserwirtschaft 2011)

Clogging by a mixture consisting of stone material
and bentonite (Pernecker 1999)

Lardarello Not known 100 (Cappetti 2006) Variable: generally > 0.5
(ENGINE 2008a)

700 (ENGINE 2008b) Not known Highly corrosive, total loss of circulation when very
high permeability fracture zones are encountered
(ENGINE 2008b)

Coso Unknown Unknown 1.4 (Julian et al. 2009) 240 (Karner 2005) Unknown Unknown

Desert Peak Unknown 100 (Chabora and
Zemach 2013)

Unknown 1.7 (additional)
(Chabora and
Zemach 2013)

Unknown Wellbore instability due to chemical stimulation
(Chabora et al. 2012)

Berlín Binary power plant
(Prevost 2004)

Unknown Unknown 54 (Bommer
et al. 2006)

56 (Rodríguez 2000) Unknown

Cooper Basin Unknown 30 (Holl 2012) Unknown 1 (Geodynamics
2013)

Unknown Unknown

Hijiori Binary Power Plant
(DiPippo 2012a)

17 (Sasaki 1998) 0.038 to 0.063
(DiPippo 2012a)

0.13 (DiPippo 2012a) 8 (DiPippo 2012a) High water losses (Johansson et al. 1993), precipitation
of anhydrite (DiPippo 2012a)
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projects (St. Gallen, Fjällbacka, Falkenberg, The Southeast Geysers, Basel and Bad

Urach) are excluded because reservoir/bottomhole temperature data could not be

found in the public domain or are only estimated in the case of St. Gallen.

The relationship shown in Figure 2 points out that most EGS activities are oper-

ated at flow rates lower than 40 l/s. Note that only 20 projects are displayed in

Figure 2; the remaining 11 projects (Genesys Hannover, Insheim, Mauerstetten,

Newberry, Coso, Berlín, Falkenberg, The Southeast Geysers, Basel, Bad Urach and

St. Gallen) are excluded because flow rate data could not be found in the public

domain.

Figure 3 displays EGS projects classified on the basis of rock types. Although it ap-

pears that EGS activities can be implemented in any of the three major groups of rocks

on earth, most projects are developed in igneous rocks, following the original HDR

concept.

The recorded maximum magnitudes of induced seismic events associated with

the development of EGS projects worldwide are shown in Figure 4. Originally, the

Richter scale was developed as a mathematical device to compare local earthquake

sizes. The magnitude is defined as the logarithm of the wave amplitude recorded

by seismographs. At that time, the smallest measurable earthquakes were assigned

with values close to zero. However, due to the higher accuracy of modern seismo-

graphs, the Richter scale now measures earthquakes having negative magnitudes.

Majer et al. (2007) reported that ‘…To date, the maximum observed earthquakes

attributed to EGS operations have been magnitude 3.0 to 3.7 and the largest geo-

thermal injection-related event was magnitude 4.6’. Later, Majer et al. (2013) also

stated that for EGS, earthquakes are typically smaller than M 3.5 (M representing

the momentum magnitude in this context). According to EGEC (2013), microseis-

mic activity is less than 3.5 on the Richter scale. Only the projects with published

induced seismic magnitude are displayed in Figure 4; the remaining 16 projects

(Le Mayet, Mauerstetten, Newberry, Bruchsal, Neustadt-Glewe, Unterhaching,

Bouillante, Altheim,, Hijiori, Genesys Horstberg, Fjällbacka, Fenton Hill, Ogachi,

Bad Urach, Falkenberg and The Southeast Geysers), most of which have been

reported to suffer from microseismicity, are omitted due to lack of explicit seismic

data.

Stimulation methods that are applied in EGS developments are summarized in

Figure 5, which reveals that hydraulic stimulation is the most commonly used

method, independently of the rock type concerned. In addition, there are relatively

few cases where chemical or thermal stimulation technologies are applied. This

often leads to the assumption that the EGS definition only applies to hydraulically

fractured systems.

The installed electrical and thermal capacity of EGS projects are summarized in

Figure 6. Since EGS is still a developing concept, the database contains only 14 projects

carried out with electricity generation. Note that the thermal capacities of Bouillante,

Soultz, Lardarello, Desert Peak, Cooper Basin and Coso are missing as data could not

be found in the public domain. The variation of production scale causes great capacity

differences among the projects.

Figure 7 shows the rock type and well depth of all the studied EGS projects

worldwide.



Breede et al. Geothermal Energy 2013, 1:4 Page 12 of 27
www.geothermal-energy-journal.com/content/1/1/4
Results and discussions
From the information provided in the tables and the plots shown earlier, it appears that

EGS projects currently under development are still on the learning curve, overcoming

problems, gaining experience and trying to introduce advanced technology; the projects

already concluded provide relevant history and analogy for upcoming developments

and the projects that have been temporarily halted or abandoned give an insight into is-

sues that must be avoided in the future.

Below are field cases where breakthrough methodologies were first implemented to

validate the EGS concept. Unplanned events and issues that needed addressing in order

to ensure feasibility and commerciality of EGS are discussed, and the corresponding

lessons learnt are highlighted.

� The ‘Paralana’ project will use a new concept called the HEWI (Petratherm 2012).

� The ‘Genesys’ project was the first project worldwide testing a single well

concept. Technical feasibility of the concept was proved by the ‘Genesys

Horstberg’ project. The subsequent ‘Genesys Hannover’ aimed to use

geothermal energy to heat the building complex of the Geozentrum Hannover

(Tischner et al. 2010). The project has currently solved the problem of salt

deposition, which has led to a suspension of the production test (Genesys

2012). This single well concept has the advantage of lower drilling costs as only

one wellbore is needed to be drilled. However, since the circulating fluid moves

through fractures, it is in direct contact with the rock formation, which leads

to salt deposition risk. This experience has taught the geothermal community

that flow assurance needs to be addressed ahead of time to prevent issues

triggered by the chemical interaction between the injected fluid and the

receiving rock, which can impair the overall success of an EGS project.

� The ‘Groß Schönebeck’ project is an important pilot for the development of

geothermal technologies in Europe as an in situ laboratory was installed in one

of the boreholes. The reservoir can be investigated by logging tools during

production using a special Y-tool which is attached to the production string

(Henninges et al. 2012). This system allows measurements with electrical tools

and fibre-optic distributed temperature sensing. However, the data transfer to

surface is problematic and can only be done discontinuously (Huenges 2013).

This suggests that further technology advances are needed in the area of well

logging for this type of applications. Using a newly developed fluid monitoring

system, fluid physicochemical properties were measured online and in situ

(Feldbusch et al. 2013). Worldwide, it is the only facility for the investigation of

sedimentary large-scale structures under natural conditions. A 7-day long-term

production-injection experiment between both boreholes to investigate the

sustainability of the reservoir was completed in April 2012 (Feldbusch et al.

2013), and results, data interpretation and modelling of the experiments have

been presented by Feldbusch et al. (2013), Cherubini et al. (2013) and Noack

et al. (2013). A corrosion test will permit the verification of the long-term

reliability of the system's components Bine 4 (2012). A thermal fluid loop as

the initial phase of fluid production was established and continuously operated

for 7 days (Feldbusch et al. 2013).



Table 4 Concluded experimental EGS projects (without power generation)

Project Description Start
date

Location Rock type Reservoir
temperature
(°C)

Well
depth
(m)

Stimulation methods Seismic
event

Fluid
temperature
(°C)

End date Flow rate
(l/s)

Falkenberg Investigation of
hydraulic fracturing at
shallow depth
(Tenzer 2001)

1977
(Tenzer
2001)

Germany
(Tenzer
2001)

Granite (MIT
et al. 2006e)

13.5
(Kappelmeyer
and Jung
1987)

500
(Tenzer
2001)

Hydraulic fracturing (Tenzer 2001) Microseismic
(MIT et al.
2006e)

Unknown 1986
(Tenzer
2001)

0.2 to 7
(Kappelmeyer
and Jung
1987) (test)

Genesys
Horstberg

Testing of new single
well concepts at an
abandoned gas well
(BGR 2012a)

2003
(BGR
2012b)

Germany
(BGR
2012a)

Sedimentary
(BGR 2012a)

150 (ENGINE
2012)

3,800
(ENGINE
2012)

Hydraulic fracturing (BGR 2012a) No measured
event (Kreuter
2011)

115 (Tenzer
2001)

2007
(estimation)
(BGR 2012b)

10 to 20
(Tischner et al.
2010)

Fjällbacka Experimental project
(Portier et al. 2007)

1984
(Jupe
et al.
1992)

Sweden
(Portier
et al.
2007)

Granite
(Portier et al.
2007)

16 (Wallroth
et al. 1999)

70 to
500
(Jupe
et al.
1992)

Hydraulic fracturing and acidizing
(Portier et al. 2007)

Microseismic
(Wallroth et al.
1999)

Unknown 1995
(Wallroth
et al. 1999)

0.9 to 1.8
(Wallroth
et al. 1999)

Rosemanowes Experimental project
(MIT 2006f)

1977
(MIT
2006f)

UK (MIT
2006f)

Granite (MIT
2006f)

79 to 100
(MIT 2006f)

2,000 to
2,600
(MIT
2006f)

Hydraulic fracturing (MIT 2006f),
viscous gel stimulation (Parker
1999), placement of proppants in
joints (Parker 1999)

Max.
magnitude,
3.1 (Bromley
and Mongillo
2008)

54.2 to 80
(Richards
et al. 1992)

1992 (MIT
2006f)

4 to 25 (MIT
2006f)

Fenton Hill First EGS in the world
(MIT 2006g)

1974
(MIT
2006g)

USA (MIT
2006g)

Crystalline
rock (Brown
2009)

200 to 327
(MIT 2006g)

2,932 to
4,390
(MIT
2006g)

Hydraulic fracturing (MIT 2006g) Microseismic
(Brown 1995)

180 to 192
(MIT 2006g)

1993 (MIT
2006g)

10.6 to 18.5
(MIT 2006g)

Ogachi Test run EGS project
in shallow depth
(Kaieda et al. 2005)

1989
(Kaieda
et al.
2005)

Japan
(Kaieda
et al.
2005)

Granodiorite
(Kaieda et al.
2010)

60 to 228
(Kaieda et al.
2005)

400 to
1100
(Kaieda
et al.
2005)

Multiple wells with multiple
fracture zones (Kaieda et al.
2005); hydraulic (Kaieda et al.
2005)

Few
microseismic
(Kaieda et al.
2010)

160 (test
result) (Kaieda
et al. 2005)

2002
(Kaieda
et al. 2005)

6.7 to 20
(Kaieda et al.
2005) (test)
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� The Altheim project in Austria uses a special working fluid, which was never used

before - a non-flammable, non-corrosive fluid with no ozone depletion activity

(Bloomquist 2012).

� The ‘Fenton Hill’ project was the first attempt to extract geothermal energy form

hot dry rocks with low permeability in the history of EGS (MIT et al. 2006g). One

of the main lessons learnt from the Fenton Hill project is that an engineered hot

reservoir should first be created from the preliminary borehole and then by

connecting the enhanced reservoir and the injection borehole with the production

boreholes (Brown 2009).

� The ‘Rosemanowes Quarry’ project in the UK stemmed directly from the positive

results from Fenton Hill. One of the most significant lessons learnt from this

project is that natural fractures and engineered fractures are almost unrelated. The

natural fracture network plays a more important role compared with hydraulically

enhanced fractures (MIT et al. 2006f). Also, as reported by Jung (2013), until then,

the basement had been regarded as a competent rock mass, realizing that in reality,

the basement contains open natural fractures even at great depth led to the

abandonment of the HDR multi-fracture concept and the adoption of the hydraulic

stimulation EGS concept.

� The ‘Fjällbacka’ project in Sweden gives similar conclusions to the Rosemanowes

project, i.e. that naturally fractured systems dictate the results of reservoir

stimulation (Wallroth et al. 1999).

� The ‘Falkenberg’ project began in 1976 and was planned as a test site for HDR at

shallow depths to better understand the mechanical and hydraulic properties of

fractures (Kappelmeyer and Jung 1987). A power generation phase was never

intended.

� The ‘Ogachi’ project in Japan, a five-spot well pattern (four producers, one

injector), was planned to be used for geothermal energy extraction from a

shallow depth reservoir, but due to financial problems, the multiple

production well system was not tried out. However, several basic technologies

were successfully developed for general EGS activities through the project,

which were later applied in another EGS programme in the Cooper Basin,

South Australia in 2002 (Kaieda et al. 2005).

� The ‘Basel’ project in Switzerland saw induced seismic events - some exceeding 3.0

in magnitude - which led to its suspension (Ladner and Häring 2009). The Basel

area has a history of natural seismic activity; the city was severely damaged by a 6.7

magnitude earthquake in 1356, the largest seismic event ever recorded in Central

Europe (Giardini 2009). However, following a 3-year study after the seismic events

recorded in connection with the geothermal project activities, the Basel project was

cancelled. Induced seismicity associated with water injection and particularly

hydraulic fracturing activities (due to changing stress patterns in reservoir rocks)

has caused wide concern among the public (Majer et al. 2011).

� The ‘Insheim’ project has also had issues of induced seismicity. A so-called side-leg

concept for the injection well was implemented to solve the problem (BINE 2012b).

This concept enables pressure distribution during fluid injection over two separated

ends of the injection well, thus minimizing the risk of induced seismicity. However,

in 2013, another induced seismic event with a magnitude of 2.0 on the Richter scale



Table 5 Abandoned or on hold EGS projects

Project Operator Description Start date Location Rock type Stimulation methods Seismic event Well
depth (m)

End date Reasons of
abandonment

Bad Urach Forschungs-
Kollegium Physik
des Erdkörpers
(MIT 2006h)

EGS pilot by one
borehole only (Tenzer
2001)

1977 (Tenzer
2001), 2006
(Wyborn
2011)

Germany
(Tenzer
2001)

Gneiss
(Tenzer et al.
2000)

Hydraulic fracturing
(Schanz et al. 2003)

Microseismicity
(Schanz et al.
2003)

3,334 to
4,445
(Schanz
et al. 2003)

1981 (MIT
2006i), 2008
(Wyborn
2011)

Torn off bore rods in
borehole (Wyborn
2011)

Basel Geopower Basel
(Romano 2009)

Planning to develop
EGS project (Ladner and
Häring 2009)

1996
(Giardini
2009)

Switzerland
(Romano
2009)

Granite
(Ladner and
Häring 2009)

Hydraulic fracturing
(Ladner and Häring
2009)

Frequent
earthquakes
(including 3.4 M)
(Romano 2009)

5,000
(Romano
2009)

2009
(Giardini
2009)

Induced seismicity
exceeding
acceptable levels
(Giardini 2009)

The
Southeast
Geysers

AltaRock Energy
(Romano 2009)

Redrill a well for EGS
demonstration project
(AltaRock Energy Inc.
2012)

2008 (Cotler
2009)

USA
(Romano
2009)

Greywacke
(AltaRock
Energy Inc.
2012)

Multiple fractures zones
in wells (planned)
(AltaRock Energy Inc.
2012)

Induced seismicity
risk (Romano
2009)

1,341
(AltaRock
Energy Inc.
2012)

2009
(AltaRock
Energy Inc.
2012)

Wellbore collapsing
and induced
seismicity risk
(Romano 2009)
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occurred due to a water circulation stop during a reparation phase of the defective

production pump (Geothermie-Pfalz 2013).

� The ‘Landau’ project is the first EGS project in a town in Germany, which is facing

similar problems to Basel. Seismic events of 2.7 in magnitude took place in 2009,

which resulted to the temporary suspension of the operations. The project was

restarted after purchasing €50 million of annual liability insurance to cover

potential seismic damages (DiPippo 2012b). As a consequence of these events,

water has to be reinjected at a reduced pressure to avoid induced seismicity,

resulting in reduced power generation. The problem is planned to be tackled by

implementing in 2013 the same side-leg concept that was used in Insheim (BINE

2012b).

� The ‘Soultz-sous-Fôrets’ project in France has allowed significant experience to be

gained by several countries who participated in this joint project. Many
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experiments were conducted during the first 21 years of the project's life before the

power plant was built. Different stimulation techniques, such as hydraulic

fracturing with and without proppants and chemical stimulation were applied.

Chemical stimulation has resulted in less seismic activity than other methods.

Change of hydraulic parameters due to fracturing has resulted in an instantaneous

variation of seismic activity. Seismic events with magnitudes greater than 2 have

occurred during the shut-in phase. Although minor damages were caused by this

EGS project, it did generate concern among the local population.

Microseismic monitoring has become an indispensable technology for the acceptance

of EGS developments as it is the case for other applications of hydraulic fracturing and

high-pressure water circulation (e.g. the exploitation of unconventional oil and gas re-

sources). The experience gained from preliminary projects has led to a common view

that induced seismicity associated with EGS activities can halt further development of

this concept particularly in densely populated areas. More recently, though, despite the

3.6 magnitude seismicity induced by well control operations during drilling in St.

Gallen, the city council decided to continue with the project and complete the first dril-

ling phase (Geothermie Stadt St. Gallen 2013b).

� The ‘Bad Urach’ project suspended operations because of financing problems

arising from a ‘difficult geologic situation’ at the well site, which indicated that this

project would be unprofitable (DiPippo 2012b).

� The ‘Geysers’ project was abandoned due to drilling difficulties and the risk of

increasing seismic activity (AltaRock Energy Inc. 2012).

It is worth mentioning here that according to Gebo NDS (2012b), drilling expend-

iture is the highest component in the development costs of an EGS project and can

vary from 42% to 90% of the overall capital costs.

As mentioned earlier, hydraulic stimulation is the most commonly used technique for

improving the permeability of a geothermal reservoir. Some of the world's EGS projects
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can extract geothermal energy from naturally fractured reservoirs, such as Northwest

Geysers, Landau, Insheim, Urach, Bruchsal, Soultz-sous-Fôrets, Fjällbacka, Hijiori,

Rosemanowes, Falkenberg and Newberry. The pre-existing naturally fractured networks

can be stimulated by low pressure that is just above the critical pressure of shear failure

(hydraulic shearing). However, the process of hydraulic fracturing, which uses injected

water at high pressure to crack the rocks, is also frequently used especially in granite.

Compared with hydraulic fracturing with high injection pressure, hydraulic shearing

can easily crack rocks with low pressure and keep the fractures open without requiring

a propping agent. Chemical stimulation, which is most applicable in carbonate rocks or

used to dissolve carbonate cement in sandstone formations, along with thermal stimu-

lation has also proved to be effective in some cases. However, there is relatively little lit-

erature concerning the application of chemical and thermal stimulation technologies in

EGS projects.

Other issues associated with EGS stimulation are related to the potentially harmful

effects on the surrounding environment. There has been public concern for the
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components of fracturing fluids that could represent a threat to drinking water sources.

However, operators argue that EGS projects rarely require additives and chemicals (e.g.

tracers, diverters, proppants) in fracturing fluids. When additives are necessary, then

non-toxic chemicals are first considered. Also, deeply buried EGS reservoirs usually do

not have a connection to near-surface groundwater aquifers, which would reduce the

likelihood of contaminating drinking water (Regenspurg and Blöcher 2012).

Radioactivity is another problem emerging from EGS activities, which is caused by

interaction between the geothermal fluid and certain formations containing radioactive

elements. In general, the content of radionuclides in acidic magmatic rocks is higher

compared to that in sedimentary rocks. Uranium and thorium are the most common

radioactive elements found in granites. High reservoir temperature in EGS projects in-

creases the solubility of radionuclides, which results in higher concentrations of these

nuclides in the geothermal fluid. When the fluid is produced, the corresponding

temperature reduction and pressure decrease in the surface facilities and causes depos-

ition of scale, which leads to health, safety and environment problems. However, com-

pared to other conventional energy production (e.g. oil and gas industry), the

radioactivity occurring in EGS is likely to be very small (Battye and Ashman 2009). Ra-

diation exposure of workers during the scale removal is avoided by using appropriate

personal protection equipment. In general, the radiation exposure to the public is lim-

ited because long-lived natural radionuclides are not released during the operation of a

geothermal power plant when the geothermal fluid is re-injected into the reservoir

(Feige and Roloff 2012).

Almost all running EGS projects in the power generation phase utilize binary power

plants. Binary systems use geothermal fluids with low temperature in the primary loop

to vaporize working fluids with low boiling point that are used in the secondary loop to

activate turbine-generator machine.

At present, two types of binary systems exist in the market: the organic Rankine cycle

(ORC) which uses organic working fluids (e.g. propane or isobutane) and the Kalina

Cycle which uses a mixture of two substances as the working fluid (e.g. water and am-

monia). The advantage of the Kalina cycle over the ORC is that the abovementioned

mixture boils at variable temperatures, which in turn creates higher efficiency at a cer-

tain inlet temperature, unlike the pure chemicals that are used in ORC (Clauser 2006).

The disadvantages of the Kalina system are the challenge of fine tuning the plant oper-

ation and the tendency of the ammonia-water mixtures to prematurely condense dur-

ing expansion. Hence, the majority of the EGS projects implemented so far tend to use

ORC power plants.

The flow rate recovered with EGS projects is crucial in dictating the success of a pro-

ject. It needs to be high to ensure the project's economic viability. Yet if the rate is too

high, there may not be sufficient ‘residence time’ for the circulating medium in the res-

ervoir to extract enough heat from the rock. Depending on reservoir permeability, frac-

ture surface area, pumping pressure, etc., the flow rate varies significantly from project

to project.

Along with the ongoing debate over the definition of EGS, it has also been reported

that the output of EGS projects is far lower than the theoretical expectation. Sanyal

and Butler (2005) built a number of simulation models as a starting point for estimat-

ing EGS reserves on the basis of conditions seen at a desert park in USA, which
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suggested a recovery factor greater than 40% for EGS. However, Grant and Garg (2012)

later pointed out that the recovery factor for the Cooper Basin EGS system would be

lower than 2%, according to the modelled performance.
Conclusions
Many publications provide eye-catching numbers about EGS potential, yet there is still

much to do to tap this energy. However, from this review of EGS projects worldwide, it

transpires that EGS is still on a learning curve. Success is not guaranteed, and this implies

significant financial risks for any EGS project, which can lead to its abandonment in some

cases (e.g. Bad Urach project).

This observation leads to the natural question of why success is not guaranteed. From

the classification exercise performed in this work, it is possible to conclude that the ‘typical’

EGS system does not exist, so much that, as shown in the introduction, the geothermal

community does not even have a universally accepted and unambiguous definition of EGS

as yet.

The typical EGS system does not exist because - as shown in the tables and in the fig-

ures - there are several possible (and significantly different) geological, petrophysical,

thermal, hydraulic and geomechanical environments where high temperature can be

tapped underground. Even the depth where sufficiently high temperature can be en-

countered varies from region to region in the world, making it difficult to specify what

‘deep geothermal energy’ (another term often used within the geothermal community)

really is and how it can be related to the EGS concept.

The problem is that of handling each particular EGS system in such a way that economic

flow rates at the right temperature and over a sufficient time span can be obtained. It is

commonly accepted that for an EGS doublet system to be of commercial size, assuming a

depth greater than 3 km and a temperature greater than 150°C, the system should operate

at flow rates between 50 and 100 l/s and produce an electric power of 3 to 10 MWe over a

life of at least 25 years (Jung 2013).

Based on the relatively limited EGS experience gathered to date and the extreme variety

of natural occurrences and engineering solutions (including reservoir enhancement), it is

therefore no surprise that EGS is still on a learning curve. This learning process must con-

tinue via more research and development, further technology advances and significantly

more financial and political incentives before EGS will be commercially feasible, say in the

next 10 to 20 years.

It is critical for EGS to ensure that relevant technologies are applied, having minimal

risk of seismicity, and permitting the exploration of geothermal resource in a safe and

environmentally friendly manner.

In the same vein, communities should be provided with regular, understandable and real-

istic information about EGS activities in order to gain public acceptance. Ongoing dialogue

and interaction with communities are vital to achieve this.
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