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Abstract 

Deep learning has gained attention as a potentially powerful technique for modeling 
natural-state geothermal systems; however, its physical validity and prediction inaccu-
racy at extrapolation ranges are limiting. This study proposes the use of transfer learn-
ing in physics-informed neural networks to leverage prior expert knowledge at the tar-
get site and satisfy conservation laws for predicting natural-state quantities such 
as temperature, pressure, and permeability. A neural network pre-trained with multiple 
numerical datasets of natural-state geothermal systems was generated using numeri-
cal reservoir simulations based on uncertainties of the permeabilities, sizes, and loca-
tions of geological units. Observed well logs were then used for tuning by transfer 
learning of the network. Two synthetic datasets were examined using the proposed 
framework. Our results demonstrate that the use of transfer learning significantly 
improves the prediction accuracy in extrapolation regions with no observed wells.

Keywords:  Physics-informed neural network, Natural-state geothermal modeling, Pre-
training, Transfer learning

Introduction
Numerical geothermal reservoir models are used to simulate coupled heat and fluid 
transport underground by solving partial differential equations for mass and energy con-
servation (Pruess et al. 1985; Ingebritsen et al. 2010; O’Sullivan and O’Sullivan 2016). The 
numerical model represents the spatial extents of subsurface fluid paths and the loca-
tions and sizes of heat sources. Expanding the use of the numerical model is essential 
for understanding the geothermal characteristics of target sites. In particular, numerical 
modeling has been widely used to understand natural-state geothermal systems, assess 
resource potential, and strategically manage geothermal reservoirs during development 
(Franco and Vaccaro 2014).

Numerical modeling of target geothermal fields requires matching a model with 
observed well logs and incorporating conceptual models based on expert interpreta-
tions of geological, geochemical, and geophysical data. Owing to the nonlinearity and 
complexity of geothermal reservoir simulations, significant effort has been put into effi-
cient inverse modeling of geothermal systems. Some approaches (e.g., gradient-based 
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or Bayesian) have been proposed and used to calibrate geothermal natural-state mod-
els (Finsterle 2000; Bjarkason et al. 2016; Bjarkason et al. 2018; Cui et al. 2018; Bjarka-
son et  al. 2019; Maclaren et  al. 2020). However, calibrating numerical simulations is 
extremely time-consuming because of frequent run failures, and gradient-based opti-
mization sometimes falls into local minima. Consequently, modeling geothermal sys-
tems still relies on manual calibration (O’Sullivan and O’Sullivan 2016), and current 
approaches are far from optimal (Maclaren et al. 2020). Further development is required 
to improve the computational efficiency and robustness of natural-state estimation 
methods, and new methods with different perspectives are warranted.

Recently, modeling methods for geothermal systems using machine learning includ-
ing deep neural networks (DNN) have been proposed and applied to estimate under-
ground thermal (Koike et  al. 2001; Spichak et  al. 2006; Ishitsuka et  al. 2018; Ishitsuka 
et al. 2021; Shahdi et al. 2021) and permeable structures (Suzuki et al. 2024). In a typical 
approach for these methods, DNNs use temperature logs at wells as training data and 
predict the temperatures at locations other than the well measurement points (Koike 
et  al. 2001; Spichak et  al. 2006; Ishitsuka et  al. 2018; Ishitsuka et  al. 2021). Although 
such approaches have shown promise for predictions around regions where well logs 
are available, prediction performance in the extrapolation region remains challenging. 
To address this, alternative approaches, including DNN variants incorporating electrical 
resistivity as training data, have been proposed (Spichak and Zakharova 2009; Spichak 
and Zakharova 2012; Spichak et  al. 2015; Ishitsuka et  al. 2018; Ishitsuka et  al. 2021). 
However, these approaches do not completely solve the problem of inaccuracy when 
extrapolating beyond the well range (Ishitsuka et al. 2021).

Physics-informed neural networks (PINNs) incorporate physics laws described as par-
tial differential equations into the loss function to consider the physical plausibility of 
the predicted quantities (Raissi 2018; Raissi et al. 2019). The PINN framework is effective 
for modeling various physical phenomena in different research domains (Liu et al. 2020; 
Cai et al. 2021; Haghighat et al. 2021; Amini et al. 2022; Sharma et al. 2023). In energy 
engineering and science, PINNs have been applied for wind power systems (Zhang and 
Zhao 2021; Li and Zhang 2022; Tian et al. 2024; Wang et al. 2024), solar power systems 
(Liu et  al. 2021; Pombo et  al. 2022), thermal modeling of buildings and construction 
materials (Gokhale et  al. 2022; Liu et  al. 2024), and petroleum development and pro-
duction (Lu et al. 2022; Du et al. 2023). In geoscience and geoengineering, PINNs have 
been utilized to discern hydrological processes (Tartakovsky et al. 2020; He et al. 2020; 
Yeung et al. 2022; Bhasme et al. 2022; Frame et al. 2023; Meray et al. 2024), seismic wave 
propagation (Karimpouli and Tahmasebi 2020; Song et  al. 2021; Rasht-Behesht et  al. 
2022; Zhang et  al. 2023), crustal deformation (Okazaki et  al. 2022), and rock proper-
ties (Chen and Zhang 2020; Chakravarty et al. 2021). A PINN for geothermal modeling 
has recently been developed to enhance the physical plausibility of temperature, pres-
sure, and permeability predictions at depth (Ishitsuka and Lin 2023). Although subsur-
face heat and fluid migration are coupled phenomena, the predicted temperatures and 
pressures returned by a conventional DNN do not guarantee physical laws. The PINN 
framework was also shown to be useful for learning energy production of time-series 
production data from natural geothermal reservoirs (Qin et al. 2024) as well as predict-
ing system behaviors in enhanced geothermal systems (Yan et  al. 2024a, 2024b) and 
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closed-loop geothermal systems (Zhang and Li 2023). Recent reviews of PINNs were 
conducted by Karniadakis et al. (2021), Cuomo et al. (2022), Muther et al. (2022), and 
Faroughi et al. (2024). Modeling physical phenomena using DNNs can be furthered with 
PINNs. However, reduced accuracy in the extrapolation domain, as observed in DNN 
modeling, remains a concern.

To address the challenges of extrapolation inaccuracy and leverage the effectiveness of 
PINNs for geothermal modeling based on Ishitsuka and Lin (2023), this study proposes 
a framework to use transfer learning with PINN (PINN–TL). It utilizes prior expert 
knowledge (including uncertainties) as multiple numerical models for the target area. 
Transfer learning is a technique used to improve the prediction performance of a new 
task by re-training a pre-trained neural network model with new data in the domain 
of the new task (Pang and Yang 2010; Weiss et al. 2016). When only a small amount of 
data is available for a new task, transfer learning can be employed to improve predictive 
performance. One of the recent advancements in PINN applications is to use numeri-
cal models to supplement the limitations of observations (Du et al. 2023; Xu et al. 2023; 
Meray et al. 2024). Geothermal energy development is a typical target that suffers from 
a lack of observations because deep thermal structures largely control geothermal reser-
voir conditions, whereas well measurements are often limited to shallow depths. How-
ever, to our knowledge, no previous study leveraged prior knowledge to enhance the 
effectiveness of PINNs for geothermal utilization.

The proposed method is expected to enhance prediction accuracy and capture the 
characteristics of deep geothermal systems, especially in regions lacking well observa-
tions. The scientific advancement of the proposed method is its flexible incorporation 
of prior information into geothermal modeling combined with deep learning. The effec-
tiveness of the proposed PINN–TL method was verified using 2D numerical simulation 
models that resemble typical geothermal systems.

Methodology
PINN

PINNs have been proposed as methods for predicting quantities consistent with physi-
cal laws (Raissi 2018; Raissi et al. 2019). Traditionally, DNNs are trained based only on 
observations; however, guaranteeing the physical plausibility of these predictions is 
often difficult. In PINNs, physical equations and boundary conditions are included as 
terms in the loss function, Loss , of the DNNs to obtain predicted quantities that approxi-
mately satisfy the physical laws described by partial differential equations and boundary 
conditions.

Here, DataMisfit , Physics , and Bounds represent the data misfit between predictions 
and observations, errors in physical constraints, and errors in boundary conditions, 
respectively. In addition, automatic differentiation (AD) is used to calculate the govern-
ing equations described by partial differential equations. AD calculates the differentia-
tion of a target by combining the differentiation of elementary functions using the chain 
rule, which is less computationally intensive and more accurate than numerical differ-
entiation. Applying AD with DNNs is efficient and reasonably straightforward because 

(1)Loss = DataMisfit + Physics + Bounds
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DNN libraries commonly include AD implementations to obtain loss derivatives using 
backpropagation.

Problems characterized by a limited amount of available data and partially known 
physical laws are challenging for both traditional data-driven and physics-based mod-
eling approaches (Tartakovsky et al. 2020). The PINN approach is advantageous over tra-
ditional deep learning when the amount of available training data is limited (Tartakovsky 
et al. 2020). Incorporating physical laws as additional learning constraints provides addi-
tional valuable information and PINNs can thus potentially provide more generalizable 
predictions (Raissi et al. 2019).

PINN for hydrothermal systems

In this study, we used the PINN method proposed by Ishitsuka and Lin (2023) for hydro-
thermal systems as a reference PINN. The method approximately satisfies the mass and 
energy conservation laws (Eqs. 3 and 4) to describe a hydrothermal system with a single-
phase pore fluid (Ingebritsen et al. 2006). The loss function of the physics-informed neu-
ral network used in this study was as follows:

where T  , P , and K  denote the temperature, pressure (pore water pressure), and per-
meability, respectively, and T̂m , P̂m , log10K̂m are the normalized values of the physical 
parameters at the m th observation location. In this study, we assumed that the tempera-
tures, pressures, and permeabilities used to calculate the data misfit were provided at 
all data points during pre-training and measured along the wells when the pre-trained 
network was tuned during transfer learning. Variables x and z denote the horizontal 
and vertical coordinates, respectively, and g is the acceleration of gravity. Physical con-
straints are divided into PhysicsMS and PhysicsEN , which represent the mass and energy 
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conservation laws. The symbols ρw , cw , µw , and �r denote the density, specific heat, vis-
cosity of the fluid, and the thermal conductivity of the rock, respectively. For ρw , cw , and 
µw , the pore fluid was assumed to be pure water, and these thermodynamic properties 
were calculated based on IAPWS-95 (Wagner and Pruß 2002; Huber et  al. 2009). M , 
Mside , and Mtop refer to the number of observation points at the wells and the number 
of positions satisfying the lateral and upper boundary conditions, respectively, where n 
denotes a normal vector. Mcol is the number of collocation points at which the loss of the 
physics constraints, as outlined above, is calculated. We used Mcol = 1000 in this study. 
The collocation points were randomly selected throughout the system. When computing 
the loss function to include the Physics and Boundary terms, we introduced multiplica-
tion coefficients ( wMS , wEN , and wBN in Eqs. 3–5) to balance their magnitudes, according 
to Ishitsuka and Lin (2023). The boundary conditions at the bottom were not incorpo-
rated in Eq. 5, in contrast with Ishitsuka and Lin (2023), because the bottom boundary 
condition is often difficult to determine before PINN analysis. In addition to the physical 
laws, a Dirichlet boundary at the top surface and Neumann boundaries on the sides were 
set as boundary conditions.

The neural network architecture used in this study comprised three feedforward 
neural networks with four hidden layers and 50 nodes in each layer. Each feedforward 
network predicted either the temperature, pressure, or the logarithm of permeability, 
and each network was linked when calculating the physical constraints and boundary 
conditions for these physical parameters (Fig. 1). The observations considered the tem-
peratures, pressures, and permeabilities retrieved from well locations. The inputs of the 
proposed PINN were the horizontal and vertical coordinates ( x and z ) as the funda-
mental inputs, whereas additional compressed values of the temperature observations 

Fig. 1  Basic architecture of the PINN used in this study. Inputs used in Approaches 1 and 2 are listed in 
(a, b), respectively. Physics and Boundary indicate constraints for physics laws and boundary conditions, 
respectively
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at wells (compressed by principal component analysis (PCA)) were used for another 
approach (Fig. 1). The PCA inputs are described in Sect. “PINN–TL”. For the activation 
function, we used the hyperbolic tangent function because a twice-differentiable acti-
vation function with respect to x and z is required, considering that the physical con-
straints contain second-order differential equations.

PINN–TL

Transfer learning leverages a pre-trained network to effectively solve a related prob-
lem (Pan and Yang 2010; Weiss et  al. 2016). The weights and biases, called network 
parameters, of the pre-trained network are used as the initial values, and only some of 
the network parameters are updated by transfer learning with newly added data. Using 
this framework, PINN–TL incorporates prior knowledge into the pre-trained network, 
and the pre-trained network is then tuned by the observed logs (Fig. 2). An additional 
advantage of using transfer learning is that it improves the convergence of learning 
and representation of pre-trained features because the number of parameters to be 
updated is reduced. Transfer learning further reduces the overfitting of the PINN to the 
observations.

We incorporated transfer learning into the PINN framework in three steps. (i) First, 
multiple numerical models were generated for pre-training. The numerical models were 
then used to generate temperature, pressure, and permeability datasets. As the prior 
information contained uncertainties, the model parameters of the simulations were 
randomly sampled from uniform parameter distributions. (ii) Then, the network was 
pre-trained using the temperature, pressure, and permeability datasets of the numerical 
models. During training, data from the entire region were used. (iii) Subsequently, trans-
fer learning was performed with the pre-trained network by training it on the observed 
temperatures, pressures, and permeabilities at the wells. In the transfer learning step, 
the network parameters were updated only in the last hidden layer and the output 
layer, whereas the network parameters in the other layers were fixed. The temperature, 

Fig. 2  Schematic of the physics-informed neural network with transfer learning (PINN–TL). The reference 
PINN framework used in this study is also shown
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pressure, and permeability were predicted using the trained PINN. TensorFlow library 
version 2.9.1 (Abadi et al. 2016) was used to implement the proposed PINN–TL.

In the pre-training step, all grid data from the pre-training datasets were used. 
The training set used 90% of the pre-training datasets, and the remaining 10% were 
used as the validation set. The training set was used to train the network parame-
ters, whereas the validation set was used to monitor the overfitting of the training 
set. For each analysis, the data used in the training and validation sets were randomly 
selected. In the transfer learning step, training was performed using well observa-
tions, with 90% of the well data near the surface as the training set and the remaining 
10% of the deeper well data as the validation set. The optimization algorithm used 
was adaptive moment optimization (Kingma and Ba 2017), with 50,000 steps for pre-
training and 20,000 steps for transfer learning.

We examined two PINN–TL approaches using different inputs. Approach 1 used 
coordinates ( x and z ) as inputs, whereas Approach 2 used additional inputs of com-
pressed temperature log values at wells (Fig.  1). In Approach 2, PCA was used to 
derive the compressed values of the temperature logs. PCA is a statistical procedure 
that determines the orthogonal axes, termed principal components, that maximize 
the variance of multidimensional observations. By selecting principal components 
with significant contributions, PCA can reduce the number of observations (i.e., 
dimensionality reduction) while minimizing the loss of information underlying 
the observations. This study used PCA to compress the dimensions of temperature 
observations, because the temperature logs of multiple numerical models can be 
regarded as multidimensional observations with the dimension being the number of 
observation points depending on the number of wells, depth, and spacing of obser-
vations. By using the compressed values as inputs, we expected that the features of 
multiple numerical data could be better trained. That is, the use of compressed val-
ues in addition to coordinates was expected to increase the number of explanatory 
variables linked to the outputs. In this study, all the temperature log data from the 
pre-training simulation models and the reference observations were compressed into 
eight dimensions using PCA. More specifically, a single numerical model of simplified 
(five well cases) and Ungaran settings with 250 and 150 temperature measurement 
points, respectively. Considering 201 numerical models (200 pre-training models and 
one reference model), the 201-by-Npoint ( Npoint = 250 or 150) matrix was compressed 
into a 201-by-8 matrix using PCA. The compressed data was then used as input for 
Approach 2. Eight dimensions were chosen because the cumulative contribution ratio 
exceeded 99% in all cases and was considered sufficient to express the features of each 
model. As an alternative to PCA, other sophisticated methods, such as multidimen-
sional scaling (Park et al. 2013; Hermans et al. 2015) could be used to select simula-
tion datasets that resemble observed logs.

The neural network architecture generally influences the suitable number of train-
ing datasets. Therefore, different numbers of datasets were examined for the pre-
training step. In the case of a limited number of pre-training datasets, 1–5 datasets 
were selected for use based on the similarity of temperature patterns with observed 
temperature logs. In a large dataset case, 200 datasets were used for pre-training, 
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regardless of their similarity to the observed temperature logs. As default test cases, 
three and 200 pre-training datasets were used for Approaches 1 and 2, respectively.

Different numbers of pre-training datasets reflect the uncertainties of the prior 
information. A few datasets are created based on prior information with higher 
confidence, whereas many pre-training datasets are based on prior knowledge with 
higher uncertainty. In this study, when selecting 1–5 simulation datasets, we calcu-
lated the mean squared error (MSE) between the temperature logs of the target area 
and pseudo-observed temperatures of the numerical simulation models and adopted 
the simulation models with the smallest MSE as those with high similarity with the 
observed logs. Two geothermal settings were used to assess the proposed PINN–TL 
model, and an examination of the number of pre-training datasets was conducted 
using one of the geothermal settings. For another geothermal setting, the default 
numbers of the pre-training datasets were chosen based on the examination of the 
former setting.

The different inputs of the two approaches are similar to the framework of PINNs 
that deal with multi-fidelity data (Meng and Karniadakis 2020; Chakraborty 2021). 
Chakraborty et al. (2021) proposed pre-training a PINN with low-fidelity data and then 
updating the network with high-fidelity data by transfer learning. This approach has the 
same flow as Approach 1 in this study. Meng and Karniadakis (2020) used two different 
networks for low- and high-fidelity data. The outputs of the network for low-fidelity data 
were used as the inputs of a PINN for high-fidelity data, in addition to the inputs of the 
coordinates. The addition of inputs is similar to that in Approach 2. Although the addi-
tional inputs of Approach 2 are the compressed values after dimensional reduction, both 
Approach 2 and the approach by Meng and Karniadakis (2020) use additional inputs for 
high-fidelity outputs.

Prediction performance

As a measure of the PINN–TL prediction performance, we used the Mean Absolute Per-
centage Error (MAPE), which is expressed by Eq. (6).

Here, N is the number of prediction locations, yref ,i is the true value of the param-
eter (temperature, pressure, or log-transformed permeability), and ypred,i is the predicted 
value. To quantitatively evaluate the prediction error in each analysis, we randomly var-
ied the initial values of the DNN parameters and positions satisfying the physical laws 
and performed training and estimation multiple times using the same data. For each 
method, we calculated the mean and standard deviation of the MAPE for 10 PINN anal-
yses that converged by randomly varying the initial network parameters and locations 
at which the losses of the physics constraints are calculated (i.e., collocation points) and 
used them to evaluate the prediction accuracy of the method.

(6)MAPE =
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Numerical datasets
This study used two natural-state geothermal settings for the reference temperature, 
pressure, and permeability datasets and created synthetic logs from the reference data. 
The reference geothermal setting was based on Bjarkason et al. (2019), which has a sim-
plified and regular permeability structure with typical features of fault-driven geother-
mal systems. Another setting was based on the Ungaran geothermal system in Central 
Java, Indonesia (Jatmiko et al. 2022). These natural-state geothermal models were simu-
lated using TOUGH2 (Pruess 2004). For both settings, we calculated the natural-state 
temperature and pressure for approximately 110,000 years from the initial state.

Simplified setting

The target area of the first simplified setting was a 2D space with a depth of 1.6 km 
and a horizontal width of 2  km, assuming a geothermal system with a fault-con-
trolled permeable region extending vertically (Fig. 3a). The hydrothermal fluid flowed 
through the vertical permeable region, representing fractures and faults, from the 
bottom of the analyzed area. It is impeded by an impermeable caprock above the per-
meable zone, which is assumed to consist of clay minerals (Fig. 3a). The impermeable 
body in the deepest part of the analyzed area assumes a basement structure (Fig. 3a). 
The permeable structure is typical of fault-driven geothermal systems in volcanic 
regions (NEDO 2000). This geothermal setting comprises five geological units with 
different permeabilities.

The simulation model consisted of 8000 elements with a grid size of 20 m. We assumed 
that heat propagates from the bottom of the basement with a constant heat flux (0.13 W/
m2) as the boundary condition. For the hot water flowing out from the bottom of the 
fracture zone, we set a mass flow rate [9.03 × 10–6  kg/(m2  s)] and a specific enthalpy 
(1.09 × 106 J/kg) as the boundary conditions of the reference model. We set a constant 
temperature and pressure (15 °C, 1013.0 hPa) at the surface as the upper boundary con-
ditions, and the lateral boundaries were closed. All analyzed areas were saturated with 
pure water. The reference permeability, natural-state temperature, and pressure distri-
butions obtained from the simulation are shown in Fig.  4. For simplicity, we assigned 
the same values for all rock physical properties in each geological unit [density: 2500 kg/

Fig. 3  Geological units of the geothermal system under a simplified and b Ungaran settings



Page 10 of 25Shima et al. Geothermal Energy           (2024) 12:38 

Fig. 4  Reference distributions for a and d permeability, b and e pressure, and c and f temperature used 
in this study. a–c used the simplified setting, and d–f used the Ungaran setting. Black lines represent the 
locations and depths of pseudo-wells

Table 1  Reference physical properties for each geological formation used in creating the Ungaran 
setting

Name of geological unit Permeability (m2) Density (kg/m3) Porosity Thermal 
conductivity 
[W/(m K)]

Specific
Heat [J/(kg K)]

Surface 1.00 × 10–16 2400 0.06 2.5 1000

Caprock 5.00 × 10–18 2400 0.05 2.5 1000

Reservoir 5.00 × 10–14 2400 0.08 2.5 1000

Fracture 1.00 × 10–12 2400 0.08 2.5 1000

Deep fracture 1.00 × 10–13 2400 0.05 2.5 1000

Heat 1.00 × 10–13 2600 0.07 2.5 1000

Boundary 1.00 × 10–18 2400 0.05 2.5 1000
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m3; porosity: 0.1; thermal conductivity: 2.5 W/(m·K); and specific heat: 1000  J/(kg·K)] 
(Bjarkason et al. 2019).

For synthetic observations, we considered several vertical wells drilled from the sur-
face, and the temperatures, pressures, and permeabilities were acquired every 20  m. 
These synthetic wells were drilled to a depth of 1000 m and were located with constant 
horizontal spacing. The main analysis was performed assuming the case of five wells 
(Fig. 4); three and nine synthetic wells were considered for comparison (Fig. S1). In all 
cases, the wells did not reach either the basement or the vertical permeable zone repre-
senting fractures, as shown in Figs. 4 and S1.

Ungaran setting

We constructed the permeability structure of the Ungaran geothermal system based on 
Jatmiko et al. [48]. In the Ungaran geothermal system, the hydrothermal upflow zone is 
around the summit of Mt. Ungaran, where a fumarole appears on the surface. The heat 
source is presumably a young magmatic or active volcanic body just below the upflow 
zone. Magnetotellurics survey results suggest the existence of a caprock and a reser-
voir with an up-domed shape (Assiddiqy et al. 2021). The Ungaran setting covers a 2D 
space with a horizontal width of 6 km and an elevation of − 3000 to 2000 m (Fig. 3b). 
As shown in Fig.  3b, the boundaries of the surface layer, caprock, and reservoir were 
curvilinear, with the surface layer decreasing in thickness near the mountaintop and the 
reservoir exhibiting an up-domed shape. At the bottom of the model, we placed a deep 
fracture zone, which shows a high permeability, instead of a basement. The boundary 
between the deep fracture zone and overlying geological units was set as a linear hori-
zontal line.

In the simulation, impermeable units were placed on both sides of the model to rep-
resent the lateral boundary conditions. A 10 km long and 5 km deep spatial region was 
divided into 5000 elements at 100 m intervals for analysis. Heat-flux boundary condi-
tions were set at the bottom of the deep fracture and heat source. A heat flux was 
assigned to the bottoms of the heat source (2.1 W/m2) and deep fracture (0.12 W/m2). 
A constant surface temperature and pressure (30.0 ℃, 1013.0  hPa) were assigned for 
the analysis, and the groundwater level was assumed to be equal to the surface level. 
The permeabilities of the Ungaran setting and natural-state temperatures and pressures 
obtained from the simulation are shown in Fig. 4. The values of each physical property 

Table 2  Numerical model parameters and uncertainties in the simplified setting

Parameters of numerical model Upper limit Lower limit

Permeability of the fracture zone (m2) 1.00 × 10–12.5 1.00 × 10–13.5

Permeability of the basement (m2) 1.00 × 10–17.5 1.00 × 10–18.5

Horizontal coordinates of the center of the fracture zone (m) 1900 100

Horizontal width of the fracture zone (m) 200 100

Elevation of the basement top (m) − 1200 − 1580

Heat flux at the bottom boundary (W/m2) 0.150 0.050

Mass of inflow water [kg/(m2 s)] 1.0 × 10–5 7.5 × 10–6

Specific enthalpy of inflow water (J/kg) 1.2 × 106 9.6 × 105
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are listed in Table  1. At this location, we assumed that five vertical wells were drilled 
from the surface with temperature, pressure, and permeability profiles. These wells 
extended from the surface to a depth of 3000 m, and data was collected every 100 m at 

Fig. 5  Examples of numerical datasets created for pre-training based on prior information by considering 
uncertainties: a–e simplified and f–j Ungaran settings. Ka–j, Pa–j, and Ta–j show permeability, pressure, and 
temperature distributions, respectively. Side boundaries of the Ungaran setting were not used in PINN and 
PINN–TL analyses and are not shown

Table 3  Numerical model parameters and uncertainties in the Ungaran setting

Parameters of numerical model Upper limit Lower limit

Permeability of the reservoir (m2) 1.00 × 10–13 1.00 × 10–14

Permeability of the fracture zone (m2) 1.00 × 10–11.5 1.00 × 10–12.5

Permeability of the deep fracture zone (m2) 1.00 × 10–12.5 1.00 × 10–13.5

Permeability of the heat source (m2) 1.00 × 10–12.5 1.00 × 10–13.5

Elevation of the top of the deep fracture zone (m) − 2000 − 2900

Heat flux at the bottom of the deep fracture zone (W/m2) 0.150 0.100

Heat flux at the bottom of the heat source (W/m2) 2.20 1.80
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each well. The positions of the wells concerning each distribution are indicated by black 
lines in Fig. 4.

Pre‑training datasets

Multiple pre-training datasets were generated based on the models described in 
Sects. “Simplified setting” and “Ungaran setting”. The parameters for which the uncer-
tainties were considered in the simplified and Ungaran geothermal settings are listed in 
Tables  1 and 2, respectively. Uniform distributions were used to represent uncertain-
ties. Permeability structures and boundary conditions were provided, and hydrothermal 
simulations using TOUGH2 were conducted to obtain the natural-state temperatures 
and pressures corresponding to different conditions. Other physical properties of the 
simulation were held constant. The fundamental assumptions in creating permeability 
structures and boundary conditions were that (a) permeabilities at the shallow depth 
range and boundary conditions at the top and sides were accurately determined from 
existing well logs and geological and geophysical knowledge, and (b) those at depths 
deeper than the maximum depth of the wells were derived from expert interpretation 
of geological, geochemical, and geophysical data but possessed uncertainties. Geologi-
cal knowledge may indicate the existence of basement and/or fault-controlled fractures, 
whereas geophysical data, such as electromagnetic and gravity observations, may indi-
cate approximate locations, sizes, and physical properties at depths. Thus, multiple 
numerical models were constructed based on the approximate quantities of permeabili-
ties, their structures, and boundary conditions, and the range of the approximate quan-
tities reflected the uncertainties. None of the datasets of these pre-training numerical 
models were identical to those of the reference model.

Examples of the pre-training datasets for the simplified and Ungaran settings are 
shown in Fig. 5. For the simplified setting, we assumed that the spatial extent and per-
meability of the surface layer, caprock, and reservoir were accurately known. Further-
more, uncertainties were considered regarding the locations and permeabilities of the 
fracture zone and basement in the simplified setting (Table 2). In the Ungaran setting, 
the surface layer, caprock, and upper boundary of the reservoir were known, whereas 
the permeabilities of the vertical and deep fracture zones, reservoir, and depth of the 
deep fracture zone were considered uncertain (Table 3). The strengths of the bound-
ary heat sources were treated as uncertain in both scenarios. Fig. S2a–e shows the 
selected datasets with high similarities to the reference temperature logs for the sim-
plified setting used to examine the influence of the number of pre-training datasets. 
For the Ungaran setting, three selected pre-training datasets (Fig. S2f–h) were used 
for Approach 1, reflecting the examination of the simplified setting.

PINN–TL predictions
Simplified setting

The predicted permeabilities, pressures, and temperatures returned by the reference 
PINN framework and PINN–TL (Approaches 1 and 2) are shown in Fig.  6. In addi-
tion, Fig. 6 shows the difference between the predictions and the reference values. Loss 
function convergence for the training and validation datasets is shown in Fig. S3. As 
the validation loss function was almost constant after about 2000–10,000 epochs, the 
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predictions in Fig.  6 were obtained from the trained network at 20,000 epochs. The 
influence of transfer learning is particularly apparent in the predicted permeabilities 
(Fig.  6Ka–Kc). The reference PINN successfully predicted the permeability structures 

Fig. 6  Distributions of predicted parameters for the simplified setting. (Ka), (Kb), and (Kc) are predicted 
permeability; (Pa), (Pb), and (Pc) are pressure; and (Ka), (Kb), and (Kc) are temperature. (Ka), (Pa), and (Ta) are 
predictions by the reference PINN. (Kb), (Pb), and (Tb) are predictions by Approach 1 of PINN–TL. (Kc), (Pc), 
and (Tc) are predictions by Approach 2 of PINN–TL. (Ka-diff–Tc-diff ) are the differences between predictions 
and reference values (prediction—reference value). For Approach 1, the three selected pre-training datasets 
were used
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of the surface, caprock, and reservoir, but not the high and low permeabilities of the 
fracture zone and basement (Fig. 6Ka and Ka-diff). The results indicated that the PINN 
could not predict the permeability structures where training wells were absent. In con-
trast, PINN–TL successfully predicted the permeability structures of the fracture zone 
and basement, along with the surface layer, caprock, and reservoir. This comparison 
demonstrates that the transfer learning of numerical datasets complements information 
at locations where well logs do not exist, especially at deeper and localized geologic units 
(Fig.  6Ka, Ka-diff, Kb, Kb-diff, Kc, and Kc-diff). Furthermore, high temperatures and 
pressures were predicted accurately by PINN–TL unlike the reference PINN (Fig. 6Pa, 
Ta, Pb, Tb, Pc, and Tc), especially at deep locations (Fig. 6Pa-diff, Ta-diff, Pb-diff, Tb-diff, 
Pc-diff, and Tc-diff).

To quantify the accuracy of the predictions, we calculated the MAPEs for the pre-
dicted temperatures, pressures, and logarithms of the permeabilities. Figures  7a, S4a, 
and S4d show the MAPEs in the interpolation depth region above 1000 m, in which the 
reference PINN exhibited lower or comparable predicted temperature and permeability 
MAPEs than those returned by PINN–TL (Fig. 7a). These trends in prediction perfor-
mance were also observed when the number of wells was three or nine (Fig. S4a and 
S4d). The lower error of the reference PINN can be explained by the number of net-
work parameters trained using the observed logs. In transfer learning, because most 
network parameters, except those near the output nodes, were fixed, the number of tun-
able network parameters became smaller than that of the reference PINN. The MAPE 
of the pressures returned by the reference PINN exhibited a larger or comparable value 
to those returned by PINN–TL (Fig. 7a). This may be because the pressure of the setting 

Fig. 7  Predicted errors (MAPEs) for each method, considering five wells for the simplified setting. MAPEs for 
a interpolated region shallower than 1000 m, b extrapolated region deeper than 1000 m, and c logarithm of 
permeability by geological formation. Vertical and error bars represent the means and standard deviations of 
the MAPEs of 10 individual runs of the reference PINN and PINN–TL (Approaches 1 and 2, respectively)
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used in this study was nearly hydrostatic, and the spatial patterns of the pressure of the 
reference data were similar to those of the pre-trained models.

The prediction accuracies below 1000  m (extrapolation depth range) are shown in 
Fig. 7b, S4b, and S4e. Prominent decreases in the MAPEs were found in the predicted 

Fig. 8  Distributions of predicted parameters for the Ungaran setting by each method. (Ka), (Kb), and (Kc) are 
predicted permeability; (Pa), (Pb), and (Pc) are pressure; and (Ta), (Tb), and (Tc) are temperature. Predictions 
by PINN without pre-training (Ka, Pa, Ta), PINN–TL Approach 1 (Kb, Pb, Tb), and PINN–TL Approach 2 (Kc, Pc, 
Tc). The differences between predictions and reference values are labeled as (Ka-diff–Tc-diff ). Three numerical 
models were used for pre-training Approach 1
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pressures and permeabilities, which were also confirmed by the spatial distribution of 
these predicted quantities at depth (Fig. 6). MAPE decreases by PINN–TL in the extrap-
olation depth range were also found when using three and nine wells (Fig. S4b and S4e). 
The MAPEs of the temperatures predicted by the PINN–TL were similar to those pre-
dicted by the PINN within the extrapolation depth range (Fig. 7b, S4b, and S4e). Com-
paring Approaches 1 and 2, Approach 2 provided the best predictions for permeabilities, 
whereas the MAPE of the predicted pressures was the lowest when Approach 1 was 
used.

Comparing the permeability prediction accuracy of the surface layer, caprock, and 
reservoir, the reference PINN showed the lowest MAPEs (< 0.1% in all cases), whereas 
the MAPEs of the predicted permeabilities at the basement were lower when PINN–
TL was used (Fig.  7c, S4c, and S4f ). These results also demonstrated that the PINN–
TL approach was beneficial in the extrapolation zone where well logs were not present. 
Despite the use of the PINN–TL, MAPEs at the fracture zone did not decrease signifi-
cantly compared with those at the basement. This limited improvement in the MAPEs at 
the fracture zone was caused by a small inaccuracy in the horizontal location of the frac-
ture zone. A slight difference in the horizontal locations of the fracture zone significantly 
increased the MAPE. The MAPEs returned by Approach 2 of the PINN–TL were slightly 
smaller than those of Approach 1.

Ungaran setting

Examples of the predictions for the Ungaran setting and the prediction error are 
shown in Fig. 8. Fig. S5 shows the loss function progression over epochs. The predic-
tions by the reference PINN in Fig. 8 were obtained after 20,000 epochs. The predic-
tions for Approaches 1 and 2 in Fig. 8 were from 1900 and 600 epochs, respectively, 
to minimize the loss function of the validation dataset (Fig. S5). Similar to the simpli-
fied setting prediction, the predicted permeability structure using the reference PINN 
indicated the presence of a surface layer, caprock, and reservoir, but not the vertical 
fracture zone, deep fracture zone, or heat source (Fig. 8Ka). Unlike the simplified set-
ting, the permeability structures of the shallow geologic units (surface layers, caprock, 
and reservoir) in which the wells are located were not accurately predicted in the 
Ungaran model (Fig.  8Ka). The pressures predicted at depth by the reference PINN 
were underpredicted, and the detailed distribution of the temperatures predicted by 
the reference PINN did not reflect the geothermal features of the high temperatures 
extending along the fracture zone (Fig. 8Pa, Pa-diff, Ta, and Ta-diff ). In contrast, the 
predictions by PINN–TL (Approaches 1 and 2) were more consistent with the refer-
ence temperatures, pressures, and permeabilities (Figs. 8Kb–Tc and Ka-diff–Tc-diff ). 
In particular, the permeabilities at the vertical fracture zone, deep fracture zone, and 
heat source were predicted by both PINN–TL approaches (Fig. 8Kb and Kc). The ele-
vation of high temperatures towards the shallow units by the upflow fracture zone 
was also more clearly predicted by PINN–TL (Fig. 8Tb and Tc).

Figure  9 shows the MAPEs for the shallow (elevation ≥  −  1000  m), deep (eleva-
tion < −  1000  m), the entire region, and each geological unit of the Ungaran model. 
Unlike the predictions in the simplified setting, the MAPEs of the temperatures and per-
meabilities predicted by the reference PINN in the shallow region were larger than those 
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predicted by PINN–TL (Fig. 9a). In fact, the MAPEs at the surface layer, caprock, and 
reservoir of the predicted permeabilities had smaller errors when PINN–TL was used 
(Fig. 9d). The MAPEs of the pressure predicted in the shallow region by the reference 
PINN and PINN–TL were similar, as observed in the simplified setting, but those of the 
reference PINN had a larger standard deviation than those of PINN–TL (Fig. 9a). We 
interpret that the more complex permeability structure of the Ungaran setting and the 
limited number of wells hinder accurate and robust predictions of permeability, tem-
perature, and pressure, even in shallow regions.

The MAPEs of the pressures and permeabilities of the deep region using PINN–TL 
were smaller than those of the reference PINN (Fig. 9b). The MAPEs of permeabilities 
also showed that PINN–TL reduced the errors in the vertical fracture zone, deep frac-
ture zone, and heat source (Fig.  9d). Compared with the predictions of the simplified 
setting (Fig. 7), the MAPE for the predicted permeabilities at the fracture zone was sig-
nificantly reduced using PINN–TL (Fig. 9d), likely because of the lower uncertainty in 
the location of the fracture zone in the pre-training datasets of the Ungaran setting. Only 
temperatures in the deep region predicted by PINN–TL showed a similar or slightly 
higher MAPE than those predicted by the reference PINN (Fig. 9b). This indicates that 
the reference PINN exhibits good accuracy when limited to temperature predictions at 
depth. Over the entire analysis range, the temperatures, pressures, and permeabilities 
predicted by PINN–TL exhibited a smaller MAPE than those of the reference PINN, 
indicating that PINN–TL was effective in improving the prediction accuracy (Fig. 9c).

The two PINN–TL approaches did not exhibit any significant differences in the 
MAPEs in the shallow region (Fig. 9a). In the deep and entire regions, Approach 1 had 
a smaller MAPE in predicting permeabilities, but the prediction by Approach 2 had a 
smaller error for temperature and pressure (Fig. 9b and c). Nevertheless, considering the 

Fig. 9  Predicted errors of the Ungaran setting. MAPEs for the a region with ≧ − 1000 m elevation, b region 
with < − 1000 m elevation, c entire analyzed region, and d logarithm of permeability for each geological 
unit. Vertical and error bars represent the means and standard deviation of MAPEs of 10 individual runs of the 
reference PINN and PINN–TL (Approaches 1 and 2), respectively
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predictions in both settings, we conclude that the difference in accuracy between the 
approaches was insignificant.

Characteristics of the proposed approaches
Influence of the pre‑training data

Figure  10a–d show examples of the predicted permeabilities of the simplified setting 
using Approach 1 when one, three, five, and 200 pre-training datasets were used. When 
the numbers of pre-training datasets were one, three, and five, the high and low perme-
abilities at the fracture zone and basement were well identified (Fig. 10a–c). In contrast, 
high permeabilities representing the fracture zone were not predicted when the number 
of pre-training datasets was 200, despite predicting the presence of low permeability in 
the deep basement (Fig. 10d). Hence, the permeabilities of the fracture zone and base-
ment were more accurately predicted by Approach 1 when the number of pre-training 
datasets was small.

The uncertainty in the permeability structures of the pre-training datasets could have 
affected the predicted permeability structures. In this case of Approach 1 with one, 
three, or five pre-training datasets, the prior information had low uncertainty, and the 
predicted permeabilities of the fracture zone and basement were predicted based on well 

Fig. 10  Examples of predicted permeability distribution in the simplified setting for different numbers of 
pre-training datasets. Predictions with a one, b three, c five, and d 200 pre-training datasets in Approach 1, 
and predictions with e three, f five, and g 200 pre-training datasets in Approach 2

Table 4  Average MAPEs of the pre-training datasets

The three datasets with the highest similarity to the reference models in terms of the temperature logs were selected, as 
shown in Fig. S2

Setting (Number of datasets) Temperature (%) Pressure (%) Logarithm of 
permeability 
(%)

Simplified (200) 22.5 1.3 2.5

Simplified (3) 3.1 0.40 1.8

Ungaran (200) 11.3 2.2 1.1

Ungaran (3) 0.66 0.12 0.55
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logs and a limited pre-training dataset (Fig. 10a–c). With 200 datasets in Approach 1, the 
high permeability in the fracture zone was obscured because of uncertain prior informa-
tion regarding its horizontal locations (Fig. 10d). Notably, even though one dataset was 
used for pre-training, the predicted quantities were not identical to those of the pre-
training dataset, especially for shallow layers with well logs (surface layer, caprock, and 
reservoir), which were tuned by the observation well logs through transfer learning.

Predictions by Approach 2 with three, five, and 200 pre-training datasets are shown 
in Fig.  10e–g. The prediction could not be obtained with one pre-trained dataset. In 
contrast with Approach 1, Approach 2 successfully predicted the permeability of each 
geological unit when 200 pre-training datasets were used, whereas the predicted per-
meability of each geological unit was unclear when a smaller number of pre-training 
datasets were used (Fig.  10e–g). Because Approach 2 uses additional inputs from the 
compressed values of the observed logs, many pre-training datasets are prerequisites to 
train the relationship between the inputs and outputs.

Mismatch reduction

The prediction errors of Approaches 1 and 2 were compared with the mismatches of 
temperature, pressure, and permeability datasets of the pre-training and the reference 
models. The average MAPEs between the pre-training datasets in the entire analyzed 
region with the simplified and Ungaran settings are listed in Table 4. For comparison, 
the MAPEs in the entire region of the simplified setting were 2.3% (temperature), 1.6% 
(pressure), and 2.5% (logarithm of permeability) in Approach 1, and 3.1% (temperature), 
2.9% (pressure), and 1.6% (logarithm of permeability) in Approach 2. For the Ungaran 
setting, the MAPEs in the entire region were 4.9% (temperature), 5.8% (pressure), and 
1.1% (logarithm of permeability) in Approach 1, and 3.4% (temperature), 5.3% (pres-
sure), and 1.7% (logarithm of permeability) in Approach 2.

In comparison, most of the MAPEs of the predictions by both PINN–TL approaches 
were larger than those of the average MAPE of the three selected models with the 
highest similarity of temperature logs to the reference model. As these selected mod-
els were used as default pre-training models for Approach 1, it may not be effective to 
constrain the temperatures, pressures, and permeabilities of the pre-training datasets. 
Compared with the average MAPE of the 200 pre-training datasets, the MAPE of the 
predicted temperatures returned by Approach 2 was smaller; thus, the temperatures 
were better constrained by Approach 2. In contrast, the MAPEs of the predicted pres-
sures by both PINN–TL approaches were larger than the average of the 200 pre-training 
datasets. This may be because the pressures of the pre-training models in the settings 
used in this study were almost hydrostatic and had few mismatches. The MAPEs of the 
logarithm of the predicted permeabilities were similar to the averages of the 200 pre-
training datasets. Despite the insignificant difference in MAPEs, the permeability struc-
tures were better predicted by PINN–TL. For example, the location of the fracture zone 
had high uncertainty in the 200 pre-training datasets of the simplified setting, whereas 
the predicted permeabilities by Approach 2 constrained the location well (Figs. 5Ka–Ke 
and 6Kc). Such locations are important for interpreting the geological background of the 
geothermal model; thus, we conclude that Approach 2 is also effective in constraining 
the permeabilities.
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Conclusions
Machine learning including PINNs has shown effectiveness for modeling geothermal 
systems, however modeling inaccuracy, especially at extrapolation depths beyond well 
ranges has been a major concern. To lessen this drawback, this study proposed using 
physics-informed neural networks along with transfer learning (PINN–TL). Expert 
knowledge was incorporated as multiple numerical models that accounted for uncer-
tainties. The neural networks were pre-trained on the temperatures, pressures, and 
permeabilities from the numerical models, followed by transfer learning using well 
observations. Two approaches were considered with different types of inputs and a suit-
able number of pre-training datasets.

The main outcomes of this study are as follows:

–	 The applications of both proposed transfer learning (PINN-TL) approaches to geo-
thermal settings showed effectiveness in terms of predicting the characteristics of the 
target geothermal systems that were not revealed by observations but were informed 
by prior knowledge with given uncertainties.

–	 Although the proposed approaches showed similar prediction accuracy, Approach 2 
is more practical and effective than Approach 1 because it can better constrain tem-
peratures and permeabilities from prior information on the subsurface structure and 
physical properties with uncertainties.

Well observations are often limited to a certain depth, and spatial density is insuffi-
cient to predict localized and deep geological units; thus, the proposed approaches can 
complement well observations with expert knowledge, especially in unexplored depths 
and horizontal ranges.

One of the limitations of the presented method is that permeability measurements 
along wells are required; however, most geothermal fields generally do not have dense 
measurements of permeabilities along wells. The development of more practical meth-
ods for permeability estimation along wells would be demanded. Alternatively, incor-
porating other geophysical observations, such as electromagnetic observations as 
suggested in Ishitsuka and Lin (2023), could be useful to supplement the limited infor-
mation on permeabilities.

As PINNs are a developing framework, there are still limitations (Muther et  al. 
2022). For example, the framework requires high-quality observations, although a 
smaller number of observations are required compared to conventional data-driven 
neural networks. A high computational burden is also a concern of PINNs. How-
ever, ongoing improvements of PINNs would mitigate the limitations and further 
enhance the effectiveness of the proposed PINN–TL. For example, the development 
of methods to handle multi-fidelity data would allow analysis of less accurate data 
supplemented by more accurate data. In addition, the development of parallelization 
techniques, such as the use of distributed learning (Shukla et  al. 2021), may reduce 
the computational load.

A conventional method for constructing a natural-state geothermal model involves 
calibrating a numerical simulation to match observations based on expert interpreta-
tions of subsurface structures and physical quantities. This process appears similar to 
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the proposed approaches, which allow the consideration of expert interpretation in 
the transfer learning framework, followed by matching well observations. This simi-
larity could facilitate widespread application in the modeling of various geothermal 
fields. As this proposed framework of transfer learning applies to modeling other 
physical phenomena with limited observations, it is expected to find applications in a 
variety of research fields.
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