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Abstract 

The quantitative connections between subsurface geologic structure and measured 
geophysical data allow 3D geologic models to be tested against measurements and 
geophysical anomalies to be interpreted in terms of geologic structure. Using a Bayes-
ian framework, geophysical inversions are constrained by prior information in the form 
of a reference geologic model and probability density functions (pdfs) describing 
petrophysical properties of the different lithologic units. However, it is challenging to 
select the probabilistic weights and the structure of the prior model in such a way that 
the inversion process retains relevant geologic insights from the prior while also explor-
ing the full range of plausible subsurface models. In this study, we investigate how 
the uncertainty of the prior (expressed using probabilistic constraints on commonal-
ity and shape) controls the inferred lithologic and mass density structure obtained by 
probabilistic inversion of gravimetric data measured at the Krafla geothermal system. 
We combine a reference prior geologic model with statistics for rock properties (grain 
density and porosity) in a Bayesian inference framework implemented in the GeoMod-
eller software package. Posterior probability distributions for the inferred lithologic 
structure, mass density distribution, and uncertainty quantification metrics depend on 
the assumed geologic constraints and measurement error. As the uncertainty of the 
reference prior geologic model increases, the posterior lithologic structure deviates 
from the reference prior model in areas where it may be most likely to be inconsist-
ent with the observed gravity data and may need to be revised. In Krafla, the strength 
of the gravity field reflects variations in the thickness of hyaloclastite and the depth 
to high-density basement intrusions. Moreover, the posterior results suggest that a 
WNW–ESE-oriented gravity low that transects the caldera may be associated with a 
zone of low hyaloclastite density. This study underscores the importance of reliable 
prior constraints on lithologic structure and rock properties during Bayesian geophysi-
cal inversion.
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Introduction
Three-dimensional (3D) geologic models illustrate the spatial distribution of subsurface 
lithologic units and major structural features such as faults, and visually convey geosci-
entific understanding during the process of resource assessment and conceptual model 
development. The models are based on a combination of geologic data derived from 
surface geologic mapping and boreholes as well as indirect evidence from geophysical, 
hydrologic or other measurements. Geophysical data sets (e.g., gravity potential field) 
may be calculated directly from 3D geologic models by assigning values for petrophys-
ical properties (e.g., density) to the subsurface rock units and calculating the forward 
gravity model. The quantitative links between geology and geophysics may allow a geo-
logic model to be tested against measured geophysical data sets, as well as the interpre-
tation of geophysical anomalies in terms of geologic structure. However, all 3D geologic 
models are based on input parameters prone to potentially large uncertainties. Geo-
physical inversion results describing the distribution of rock types and physical property 
values in the subsurface are also uncertain, as an infinite number of possible models of 
the subsurface may account for the measured data. While the integration of geologic 
constraints and prior information such as rock petrophysical properties are necessary 
to ensure the inversion process retains geologic meaning, overly strong prior constraints 
may lead to an underestimation of uncertainty in the final results. Quantifying how the 
degree of confidence in the prior understanding of geothermal system structure affects 
results from probabilistic inversion methods is necessary for these approaches to con-
tribute to effective risk management in geothermal resource assessment (United Nations 
Economic Commission for Europe Expert Group on Resource Classification 2017).

Geophysical measurements can be used to test existing geologic models and infer the 
properties of the subsurface in areas where primary observational data from boreholes 
are lacking. Given a prior model of the subsurface, inversion improves the correspond-
ence between measured data and the calculated geophysical data (reduces the misfit) by 
adjusting the structure and properties of that model. Deterministic inversion methods 
calculate a solution that minimizes this misfit by modifying only the physical proper-
ties of the model cells specified in the initial model (Li and Oldenburg 1998) and/or by 
modifying the rock type (and indirectly, the physical properties) of the model cells (Ful-
lagar et al. 2008). As inversion of gravity potential field data is highly under-constrained 
(a phenomenon termed non-uniqueness in geophysical inverse theory), the a priori con-
straints on the geometric arrangement of the main rock units and their petrophysical 
properties in the initial model play a critical role in retaining geological meaning in the 
inversion process (Boulanger and Chouteau 2001; Li and Oldenburg 1998). To account 
for the uncertainty of the geometry of the initial model itself and the physical properties 
of each rock type, manual adjustment of the initial model geometry and/or rock proper-
ties is typically performed to assess their effect on the inversion results (e.g., Abdelfettah 
et al. 2014; Altwegg et al. 2015; Miller et al. 2017; Witter et al. 2016).

Probabilistic inversion methods are becoming increasingly popular as geologic 
modeling becomes integrated into advanced machine-learning and Bayesian infer-
ence frameworks (Calcagno et  al. 2008; De La Varga et  al. 2019; Jessell et  al. 2014). 
These techniques generate millions of possible realizations of subsurface structure 
from a reference prior model by stochastically varying lithologic structure and rock 
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physical properties according to specified prior probability distributions. Similar to 
deterministic techniques, a geologic model configuration is considered more likely if 
it is consistent with prior geologic information about the system and it reduces the 
misfit between the forward-modeled geophysical field and measured data. However, 
in contrast to deterministic inversion techniques, such approaches provide posterior 
probability distributions for rock type and corresponding rock properties over the 
model space (Bosch 1999; Bosch et al. 2001; Chen et al. 2012; Corbel and Wellmann 
2015; De La Varga et al. 2015; Guillen et al. 2008; Jessell et al. 2014; McCalman et al. 
2014; Wellmann et  al. 2017). Although the mode of the posterior might be seen as 
the most probable model, analogous to a global optimum solved using determinis-
tic inversion, probabilistic models should not be used to infer a single structure but 
rather to falsify a range of possible models inconsistent with observations (Tarantola 
2006).

The non-uniqueness of gravity potential field data means that an infinite number of 
possible realizations of the subsurface density structure may be consistent with meas-
ured data. This partially makes Bayesian inference methods well-suited for the inver-
sion of gravity potential field data, since they allow a prior model of the distribution of 
rock types and density to reflect the additional knowledge gained about the subsurface 
through the gravity data. The prior beliefs are updated based on a likelihood probabil-
ity, which describes a probabilistic relationship between model and data and is based 
on knowledge of physical laws and measurement error. Although the uncertainty of the 
gravity data may be significant, the more difficult uncertainty to account for in Bayes-
ian inversion of geophysical data is the uncertainty of the prior (e.g., Caers 2011; Scales 
and Tenorio 2001). While an overly conservative prior will restrict the possible solution 
space and lead to underestimation of uncertainty, an overly broad prior will produce 
geologically meaningless results.

In this study, we develop a probabilistic geologic model of the Krafla geothermal field 
constrained by gravimetric data. Our approach combines 3D geologic modeling, statis-
tical analyses of rock properties, and inversion of gravimetric data to assess the litho-
logic and density structure of a volcanic geothermal system. The Bayesian inference 
framework, implemented in GeoModeller V4 (Intrepid Geophysics 2017a), uses Markov 
Chain Monte Carlo sampling to calculate the posterior probability densities for the 
model parameters lithology and bulk density in light of the observed gravity data. We 
incorporate two forms of empirical prior information about the Krafla system, a refer-
ence geological model developed by expert geologists (Mortensen et al. 2009; Weisen-
berger et  al. 2015), and probability distributions describing the bulk mass densities of 
the main rock types based on statistical analyses of laboratory measurements. Our main 
objective is to assess how treatment of uncertainty in the reference prior geologic model 
and petrophysical properties affects the probabilistic inversion results. In addition to 
varying the structure of the reference prior model and the prior physical properties of 
the main rock types, we explore how posterior results are affected by the probability that 
lithologic changes are proposed to the reference model and the strength of the applied 
geologic constraints. We show how the uncertainty of the prior exerts a strong control 
on posterior results, and suggest that treating this uncertainty as a variable that is varied 
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between inversion runs may allow the most uncertain parts of the reference prior model 
to be determined.

Krafla geothermal field
Krafla is one of five active volcanic centers arranged in en-echelon fashion within the 
northern volcanic zone (NVZ) in northeast Iceland, along with Kverkfjöll, Askja, Frem-
rinámur and Theistareykir (Fig. 1). To the north, the NVZ joins with the Husavik Flatey 
Fracture Zone (HFFZ), a right-lateral transform zone that connects the NVZ with the 
Kolbeinsey Ridge north of Iceland. To the south, a left-lateral transform zone, the South 
Iceland Seismic Zone (SISZ), conveys the divergent plate boundary and locus of crustal 
extension and volcanism towards the west. The Krafla area features a volcanic caldera 
astride a major NNE–SSW trending fissure swarm (Sæmundsson 2008). While volcan-
ism in the caldera dominantly occurs as basaltic fissure eruptions and dike injections, 
there are intermittent eruptions of more silicic magmas (Jónasson 1994). A large earth-
quake sequence accompanied by repeated dike injections and basaltic fissure eruptions 
occurred in 1975–1984, mostly in the northern part of the fissure swarm (Björnsson 
et al. 1977; Einarsson 1991). In the center part of the caldera, where geothermal surface 
manifestations are abundant (Fig. 1b), the area hosts a geothermal power plant that cur-
rently generates 60 MWe.

Geologic structure

The geologic structure of the Krafla area has been intensively studied (Ármannsson et al. 
1987; Mortensen et al. 2009; Pope et al. 2016; Sæmundsson 1991, 2008; Stefánsson 1981; 
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Fig. 1  Map of the Krafla area. a Topographic map of the Krafla area showing geothermal surface 
manifestations (red), eruptive fissures and craters (brown), outer caldera rim (lines with filled triangles), 
inferred inner caldera rim (lines with open triangles), and roads (yellow). Box shows the area of the geologic 
model built in this study (Fig. 3). b Location of the Krafla volcanic center in the northern volcanic zone, 
along with other volcanic centers. Volcanic centers in the Northern Volcanic Zone (NVZ) are labeled (Þ = 
Theistareykir, F = Fremrinámur, A = Askja, Kv = Kverkfjöll) as well as the Husavík Flatey Fault (HFF). Box shows 
the area of the map of Krafla shown in a. Coordinates are shown in ISNET95 (same as Lambert 95)
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Weisenberger et al. 2015). The subsurface geology mainly consists of alternating layers 
of sub- or intraglacially-erupted basaltic hyaloclastite (a broad term describing highly 
heterogeneous rocks consisting of a mix of breccias, tuffs and pillow basalts) and suba-
erially-erupted basaltic lava flows in the upper  1.5 km with interspersed basaltic dikes 
and sills and rhyolitic intrusions. Doleritic and gabbroic intrusions become increasingly 
pervasive below 1.5  km depth, along with minor granophyre and other silicic intru-
sions. The alteration mineralogy follows a typical temperature-dependent zonation 
with depth (Kristmannsdottir 1979; Sveinbjörnsdóttir 1992). With increasing depth and 
temperature, these zones are the smectite–zeolite zone, the mixed-layer clay zone, the 
chlorite–epidote zone, the epidote zone, and the epidote–actinolite zone. Multiple lines 
of evidence suggest the presence of a network of basaltic sills and dykes at depths of 
∼ 3–7 km beneath the Krafla caldera (e.g., Brandsdóttir et al. 1997; de Zeeuw-van Dalf-
sen et al. 2006; Einarsson 1978; Kennedy et al. 2018; Tryggvason 1986), and direct evi-
dence of rhyolitic magma was provided during the drilling of the IDDP-1 well, which 
encountered a rhyolitic intrusion formed by partial melting of hydrothermally altered 
basalts at ∼ 2.1 km depth (Elders et al. 2011, 2014).

Gravity potential field

Gravimetric data measures spatial variations in Earth’s gravitational field (usually 
restricted to the vertical component of the gravitational field) resulting from density 
contrasts in the subsurface. Several gravity surveys have been carried out at Krafla 
between 1969 and 2015 (Johnsen et al. 1980; Johnsen 1995; Magnússon 2016). The grav-
ity data used in this study is described in detail by Magnússon (2016), which considers 
522 measurements made over an area of ∼ 625 km2 . Station spacing is highly variable, 
ranging from 0.1 to ∼ 10 km, with a total of 49 stations located within the 20 km2 area 
of the geologic model. The Bouguer anomaly is calculated assuming a reference den-
sity of 2.51 g cm−3 , following Magnússon (2016), and is shown in Fig. 2a. The selected 
reduction density is also consistent with Kaban et al. (2002). To isolate gravity anoma-
lies resulting from local density heterogeneities within the model domain (restricted to 
<3 km b.s.l. depth), the residual Bouguer anomaly is calculated by subtracting a regional 
field (Fig. 2b) estimated by fitting a third-degree polynomial trend to longer-wavelength 
signals from the Bouguer anomaly. The calculated residual Bouguer anomaly was inter-
polated onto a regular grid with a resolution of 0.1 km × 0.1 km (Fig. 2c).

The residual Bouguer anomaly reveals a high gravity anomaly associated with the Kra-
fla volcano. High gravity anomalies near the outer caldera rims (6–8 mGal) transition 
to lower values in the center of the central volcano (3–5 mGal). The gravity data also 
show a WNW–ESE trending gravity low (shown with white dashed lines in Fig. 2c) that 
transects the center of the caldera. Árnason et al. (2007) suggest that these trends result 
from variations in hyaloclastite thickness, inferring the existence of an inner caldera 
with thicker hyaloclastite piles buried within the outer caldera. Additionally, Árnason 
et al. (2007) postulate that the WNW–ESE trending gravity low represents an oblique 
transform graben containing a greater thickness of hyaloclastite. Weisenberger et  al. 
(2015) suggest that this structure plays a major role in the conceptual model of the field, 
as the deep intrusive heat sources are aligned with this structure and inclined towards 
the north.
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Methodology
Our approach combines a reference prior geologic model of Krafla built from bore-
hole data and statistics for rock petrophysical properties within a Bayesian inference 
scheme implemented in the geologic modeling package GeoModeller (Intrepid Geo-
physics 2017a, b).

Reference prior geologic model

A reference prior geologic model of the Krafla system was developed based on sur-
face geologic mapping (Sæmundsson 2008) and an interpreted 3D geologic model 
for the system previously built in Petrel and described by Mortensen et  al. (2009) 
and Weisenberger et  al. (2015). The stratigraphic data underlying the reference 
prior model is derived from 14 wellbores (KS-1, KV-1, K-4, K-8, K-10, K-18, K-19, 
K-21, K-22, K-24 to K-27, K-30 to K-40 and IDDP-1). GeoModeller uses an implicit 
approach to calculate the structure of the reference prior model based on contact 
point and orientation measurements, with lithologic interfaces calculated as a series 
of multiple interacting scalar potential fields estimated using a co-Kriging geostatis-
tical interpolation scheme (Calcagno et al. 2008).

Figure 3 shows the surface geology within the model domain (the area of which is 
shown by the white box in Fig. 1a) as well as the location of cross sections, as shown 
in Fig.  3b–d. The reference geologic model presents a simplified interpretation of 
the complex sequence of lithologic units identified from well cuttings (Mortensen 
et  al. 2009, and references therein). The 11 stratigraphic units consist of an alter-
nating sequence of five lava flow units (L1–L5, shown in blue) and four hyaloclas-
tite units (H1–H4, yellow) underlain by basement intrusions (B, red) and overlain in 
some areas by a thin ( ≤ 0.2 km) surface cover (grey). Although the total area of the 
geologic model is 25 km2 , most of the wellbore data, upon which the geologic model 
is based, is derived from a smaller area in the center of the model (wellbore loca-
tions shown by the black dots in Fig. 2a). The two main wellfields, Leirbotnar in the 
northwest and Suðurhlíð ar in the southeast, are separated by a series of explosive 
craters called Hveragil (Fig. 2a).
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Fig. 2  Bouguer gravity map of the Krafla area. a Bouguer anomaly. b Regional gravity field. c Residual 
Bouguer anomaly calculated by subtracting b from a. Measurement stations shown as grey dots. Caldera 
faults and boundaries of WNW–ESE-oriented low gravity structure shown with dashed line (see text)
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Fault structure within the rift zone was calculated based on mapping of selected 
surface traces (Sæmundsson 2008). Fractures and eruptive fissures strike N to NNE, 
and show near-vertical dip at the surface that lessens with depth with total throw less 
than 20 m (Gudmundsson 1989; Hjartardóttir et al. 2012; Opheim and Gudmunds-
son 1989). Although the calculated fault network is highly uncertain and represents 
only one possible interpretation, faults are not explicitly included in the litho-
constrained inversion scheme implemented in GeoModeller (Intrepid Geophysics 
2017b), as the reference prior model is discretized into voxels in which density and 
lithology are uniform. However, the presence of faults in the model is reflected indi-
rectly in the lithologic structure of the model by lateral changes in the depth of rock 
layers, which could be possibly indicative of fault displacement, and are included in 
the presentation of the results for visual convenience. For an explicit consideration 
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of fault uncertainties in a Bayesian inversion of geophysical data, a useful approach 
is that of Wellmann et al. (2017).

Rock properties

Statistics for grain density and total porosity of the main lithologic units were derived 
from previous studies of Icelandic rock properties and compiled into the Valgarð ur 
database (Franzson 2001; Franzson et  al. 2010; Frolova et  al. 2005, Sigurðsson et  al. 
2000). The samples were collected mainly between 1992 and 2004 from eroded fossil 
geothermal systems exposed near the surface and to a lesser extent from cores taken 
from active geothermal systems. Thus, it is assumed that the petrophysical proper-
ties of rock samples are not significantly changed by the process of erosion and exhu-
mation. The data was treated with the purpose of obtaining grain density and total 
porosity values that also meet the criteria of corresponding to a unique sample ID 
with a description of the rock type. Based on the rock descriptions, the samples were 
grouped into the three lithologic types considered in the geologic model:

•	 hyaloclastite, encompassing sub-glacially erupted breccias, tuffs, and pillow basalts,
•	 sub-aerially erupted basaltic lavas,
•	 basement intrusions, including doleritic dykes and sills crystallized at depth as well 

as gabbroic intrusions.

The measured data for grain density and total porosity are shown in Fig. 4a. Hyaloclas-
tites have a slightly lower average grain density ( 2.69± 0.13 g cm−3 ) than the lava flows 
( 2.87± 0.11 cm−3 ) and basement intrusions ( 2.75± 0.18 cm−3 ). However, the poros-
ity of hyaloclastites is much higher ( 0.25± 0.14 compared to 0.08± 0.1 for lava flows 
and 0.03± 0.04 , respectively). The statistics for grain density and porosity were used to 
calculate bulk wet density based on the mass-weighted contributions of the solid rock 
matrix and fluid in the pore space:

where φ is porosity, ρr is grain density, and ρf  is fluid density. The bulk wet density (here-
after referred to as bulk density) of each lithology was calculated by fitting a normal and 
beta probability density function (pdf) to be measured grain density and total poros-
ity, respectively, and performing Monte Carlo sampling of these pdfs to evaluate Eq. 1. 
The beta distribution for porosity was restricted to values less than 0.6, greater than the 
maximum porosity value observed in the data. A constant fluid density of 0.8  g  cm−3 
(corresponding to ∼ 250 ◦ C pure water) was assumed in the calculation of bulk density. 
This assumption is a limitation of our model that contributes to greater uncertainty of 
the prior, as fluid density in geothermal systems can vary strongly, mainly related to vari-
ations in the vapor content of boiling zones.

The prior pdfs for the bulk density of each rock type are calculated by fitting a nor-
mal distribution to 10,000 samples obtained through the Monte Carlo sampling of 
Eq. 1, and are shown in Fig. 4b. The bulk density of hyaloclastite ( 2.1± 0.36 g cm−3 ) 
is much lower than lava flows ( 2.65± 0.23 g cm−3 ) or basement intrusions 
( 2.73± 0.13 g cm−3 ), reflecting the high porosity of hyaloclastites. The thin surface 

(1)ρbulk = (1− φ)ρr + φρf ,
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cover has a maximum thickness <  0.2  km and was assigned a bulk density equal to 
the reference density used in calculation of the Bouguer anomaly ( 2.51± 0.10 g cm−3).

The precipitation of secondary minerals in vesicles as well as the replacement of 
primary basaltic minerals by secondary minerals, mainly clay minerals, may lead 
to a reduction of porosity and increase in grain density of hyaloclastite (Frolova 
et  al. 2005; Franzson et  al. 2010). To account for the effects of alteration, the prior 
pdfs for the bulk density of the hyaloclastite units were adjusted in some inversion 
runs to reflect the possible effects of alteration. Figure  4c shows the data for grain 
density and total porosity of hyaloclastites grouped into the five temperature-
dependent alteration zones typically found in Iceland (Kristmannsdottir 1979; Svein-
björnsdóttir 1992), as well as the data for fresh (unaltered) hyaloclastites. Altered 
hyaloclastites containing significant amounts of chlorite, epidote, and actinolite have 
undergone fluid–rock interaction at temperatures greater than 240–250  ◦ C (Krist-
mannsdottir 1979) and show higher grain density ( 2.78± 0.9 g cm−3 ) and lower 
porosity ( 0.16± 0.11 ) than hyaloclastites altered to smectite–zeolite or mixed-layer 
clay facies ( 2.66± 0.16 g cm−3 , 0.22± 0.1 ). The only measurements of total poros-
ity > 0.4 are in fresh hyaloclastites, which are unlikely to be found in the subsurface 
(>0.5  km depth) in active geothermal areas. Figure  4d shows two normal pdfs for 

Alteration zone

a

Hyaloclastites
μ = 2.10
σ = 0.36

b

Lava flows
μ = 2.65
σ = 0.23

Basement intrusions
         μ = 2.73
         σ = 0.13

SZ/MLC
μ = 2.25
σ = 0.24

CEA
μ = 2.47
σ = 0.23

All Hyaloclastites
   μ = 2.10
   σ = 0.36

dc

Fig. 4  Rock property data used to constrain prior pdfs. a Measured data for grain density and total porosity, 
sorted by lithology. b Prior probability distribution functions (pdfs) for bulk density. c Measured data for grain 
density and total porosity of hyaloclastite, sorted by alteration zone. d Prior pdfs for hyaloclastite bulk density 
calculated for alteration zones. SZ/MLC indicates pdf for smectite–zeolite and mixed-layer clay zones, CEA 
chlorite, chlorite–epidote, and epidote–actinolite zones
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the bulk density calculated for altered hyaloclastites, with one pdf representing the 
smectite–zeolite and mixed-layer clay (SZ-MLC) alteration zones ( 2.25± 0.24 ) and 
another the chorite, chlorite–epidote and epidote–actionlite (CEA) alteration zones 
( 2.47± 0.23 ). For the inversion runs accounting for the effects of alteration on hyalo-
clastite bulk density, we specify a bimodal Gaussian prior pdf in which the proportion 
of the CEA component increases from 25% near the surface (hyaloclastite unit H4) to 
100% in the deepest hyaloclastite unit (H1).

Bayesian inference framework

GeoModeller uses a Markov Chain Monte Carlo (MCMC) statistical sampling scheme 
to drive the litho-constrained 3D inversion process and evaluate the posterior prob-
ability distribution. The method has been described previously in detail (Bosch 1999; 
Bosch et al. 2001; Guillen et al. 2008) and will therefore only be briefly summarized 
here. The Bayesian inference scheme divides the prior probability space into two 
model parameter spaces:

•	 a primary geologic parameter space mpri describing the spatial distribution of the 
lithologies,

•	 a secondary parameter space msec describing rock petrophysical properties condi-
tional on lithology.

Measurements of the gravity potential field constitute the additional information about 
the system used to estimate the posterior probability density functions for lithology and 
density throughout the model domain according to a modified version of Bayes’ law:

where the posterior pdf, π(msec,mpri | y) represents the updated knowledge about the 
subsurface lithologic and density distribution given the observed gravity data y. This 
quantity is proportional (up to a normalization constant c) to the product of the two prior 
pdfs, πp(mpri) , which considers the primary lithological subspace, and πs | p(msec |mpri) , 
a conditional pdf describing the dependence of the bulk density on the lithology, and a 
likelihood function, L(y |msec) , which quantifies probabilistically the misfit between the 
gravity potential field calculated from the joint model and the observed gravity data (see 
Eq. 5).

Specification of the prior

The aim of Bayesian inversion of gravity data is to infer the subsurface lithology and den-
sity distribution in light of gravity data and the prior geologic understanding of the sys-
tem. Three types of geologic constraints are used to ensure that posterior results retain 
geologic meaning from the reference prior geologic model (Intrepid Geophysics, 2017a, 
2017b):

•	 The preservation of vertical stratigraphic order, forcing model realizations to respect 
the vertical sequence of the stratigraphic units as specified in the reference prior geo-
logic model.

(2)π(msec,mpri | y) = cL(y |msec)πs | p(msec |mpri)πp(mpri),
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•	 A commonality constraint describing the expected similarity between the voxel 
lithology in the reference prior geologic model and model proposals.

•	 A shape ratio constraint describing the expected roughness of the boundaries 
between the lithologic units.

In addition, the inversion process is not allowed to change the lithology of voxels that 
intersect the surface (the surface geologic map is unchanged by the inversion process). 
Unless otherwise noted, the lithology of voxels in the subsurface are not held constant 
during the inversion process. Thus, differential geological data quality is not considered 
and all voxels are equally uncertain. This contrasts with some other probabilistic geo-
logic modeling schemes (De La Varga et al. 2019; Wellmann et al. 2017), which directly 
invert for the contact point and orientation measurements controlling the implicit 
interpolation.

The inversion runs performed in this study are described in Table 1. The first suite of 
runs consists of ’prior-only’ inversion tests, where 500,000 samples are generated from 
the prior distribution without consideration of geophysical likelihoods to illustrate the 
prior probability space implied by the reference prior geologic model and the assumed 
geologic constraints. Case 0 explores the prior probability space of the model in the 
absence of any geologic constraints, and Case 1a–c and 1d–f explore the effect of the 
commonality and shape ratio constraints, respectively. Since the inversion scheme gen-
erates proposals by proposing changes to the reference prior model one voxel at a time, 
the reference prior model exerts an influence on the probability space implied by the 

Table 1  Inversion runs

PVSR Preservation of vertical stratigraphic relationships from reference prior model

Name PVSR Commonality 
constraint

Shape 
ratio

Probability 
lithologic 
changes 
(%)

Altered 
hyaloclastites

Rhyolitic 
intrusion

Consider 
geophysical 
likelihood

Gravity 
measurement 
error

Case 0 No No No 100 No No No –

Case 1a Yes Loose No 100 No No No –

Case 1b Yes Moderate No 100 No No No –

Case 1c Yes Tight No 100 No No No –

Case 1d Yes No Smoother 100 No No No –

Case 1e Yes No Similar 100 No No No –

Case 1f Yes No Rougher 100 No No No –

Case 2a Yes No No 0 No No Yes 0.1

Case 2b Yes No No 50 No No Yes 0.1

Case 2c Yes No No 100 No No Yes 0.1

Case 3a Yes Loose No 50 No No Yes 0.1

Case 3b Yes Moderate No 50 No No Yes 0.1

Case 3c Yes Tight No 50 No No Yes 0.1

Case 3d Yes No Smoother 50 No No Yes 0.1

Case 3e Yes No Similar 50 No No Yes 0.1

Case 3f Yes No Rougher 50 No No Yes 0.1

Case 4a Yes Moderate Rougher 50 Yes No Yes 0.1

Case 4b Yes Moderate Rougher 50 Yes No Yes 0.5

Case 5a Yes Moderate Rougher 50 Yes No Yes 0.1

Case 5b Yes Moderate Rougher 50 Yes Yes Yes 0.1
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reference prior model even in the absence of any geologic constraints (Case 0, Fig. 5). The 
incremental repositioning of boundaries explains why even though preservation of verti-
cal stratigraphic relationships of the reference prior geologic model are not enforced in 
Case 0, hyaloclastites have a higher probability of occurring at shallower depth (Fig. 5a), 
lava flows at intermediate depths (Fig. 5b), and basement intrusions at depths >1 km b.s.l 
(Fig. 5c), broadly consistent with the structure of the reference prior model. However, 
the lateral continuity of the hyaloclastite and lava flow units described by the reference 
prior model is lost in the absence of geologic constraints (Fig. 5d), contradicting geologic 
evidence of the layered structure of lava flows and hyaloclastites (Walker 1971). While 
the assumption of the preservation of vertical stratigraphic relationships from the ref-
erence prior model in accepted model realizations implies that stratigraphic units can 
not be created (e.g., basement intrusions in between hyaloclastite and lava flow units), 
they can be destroyed as the boundaries of over- and underlying stratigraphic units shift 
down- or upward, respectively.

In addition to assuming the preservation of vertical stratigraphic relationships, we 
quantify beliefs about the uncertainty of the reference prior model using the com-
monality and shape ratio constraints. The commonality constraint describes the prob-
ability of a proposed model as a function of how closely the proposed distribution of 
lithologies resembles the reference prior model. The pdf describing the probability of 
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a model configuration as a function of commonality misfit is given by a Weibull distri-
bution, which for a scale parameter � > 0 and shape parameter κ > 0 is given as

where x is the commonality misfit function, defined as

where j is the index over the voxels, Ref(j) is the set of voxels in the reference geologi-
cal model, and Same(j) is the number of voxels in the intersection between the set of 
voxels in the current model and the reference model. The expected value of a Weibull 
distribution is given by E = �Ŵ(1+ 1

k
) , where Ŵ is the gamma function. Thus, since we 

assume κ = 1 (in which case the Weibull distribution reduces to an exponential distri-
bution with mean � ), assumption of a scale parameter of 0.5 (moderate commonality 
constraint) implies an expected 67% overlap between the set of voxels defined for a par-
ticular stratigraphic unit in the reference model and those voxels in model realizations. 
A scale parameter of 0.05 implies a 95% overlap (tight commonality constraint), and a 
scale parameter of 5 implies a 17% overlap.

The shape ratio constraint is used to constrain the roughness of the lithologic units. 
For a particular formation, shape is given by the ratio of the square root to the cube 
root of the volume, and shape ratio is the ratio of the shape of the proposed model for-
mation divided by the shape of the formation in the reference model. The probability 
of a proposed model configuration as a function of shape ratio is given by a log normal 
distribution. In this study, we vary the mean of the log-normal distribution to 0.8, 1, or 
1.2, corresponding to an expectation of 20% smoother, similar, or 20% rougher litho-
logic units, as quantified by the shape ratio, and set the standard deviation to 0.05.

’Prior-only’ tests were carried out to assess the effect of varying the strength of the 
commonality and shape ratio constraint on the prior probability space implied by the 
reference prior geologic model. Figure 6a–c shows the prior probability of hyaloclastite 
along Section 1 for a tight, moderate or loose commonality constraint, respectively. The 
spatial distribution of prior probability more closely resembles the reference prior model 
when there is a tight commonality constraint (Fig. 6a). As the commonality constraint 
is loosened (Fig. 6b, c), the zones of intermediate probability along the edges of the hya-
loclastite units become more diffuse. Figure 6d–f shows similar results for a smoother, 
similar or rougher shape ratio constraint. If model realizations with smoother litho-
logic boundaries compared to the reference model are favored (Fig. 6d), the boundaries 
between the hyaloclastite units are flat. Even if model realizations with rougher litho-
logic boundaries are favored, the boundaries between the high hyaloclastite probability 
areas are less jagged than the loose or moderate commonality constraint and no shape 
constraint. Thus, the commonality and shape ratio constraints allow expected beliefs 
about the uncertainty of the location of the lithologic units and the roughness of the 
boundaries to be expressed.

(3)π(x| �, κ) =
(κ

�

)(x

�

)κ−1
exp

(

−

(x

�

))κ

,

(4)x =
1

Same(j)
Ref(j)

− 1
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Stochastic inversion methodology

A Markov chain records a pseudo-random walk in a model space, with a model outcome at 
each step t of the walk until a final step T. A Markov chain is ergodic to a pdf π(m) if the set 
of model outcomes from the chain ST = {m1,m2, . . . ,mT} converges to π(m) as the num-
ber of steps increases. To estimate the posterior probability density, three Markov chains 
corresponding to the three terms in Eq. 3 are generated (Bosch 1999; Bosch et al. 2001):

•	 A primary chain considering the lithological prior.
•	 A prior chain considering both the lithological and petrophysical prior information.
•	 A posterior chain, which modifies the prior chain to generate joint models of the lithol-

ogy and density distribution constrained by the geophysical likelihood.

For the primary chain, a Metropolis sampling rule (Metropolis et al. 1953) considering the 
probability of a proposed model configuration as a function of commonality misfit and/or 
shape ratio was used to generate a chain ergodic to π(mpri) . The prior chain samples from 
a joint pdf using an outcome from the primary chain (a marginal pdf) to sample from the 
conditional pdf πs| p(msec |mpri) . For the posterior chain, the Metropolis test considers the 
geophysical likelihood to generate a Markov chain ergodic to the posterior probability den-
sity π(msec,mpri | y) , respectively, similar to the framework described by Mosegaard and 
Tarantola (1995).

The likelihood of a proposed model is calculated based on the misfit between the simu-
lated gravity response of a proposed geologic model and the observed data. For details on 
how the vertical component of the gravitational field is calculated based on a combination 
of the contributions of all the voxel cells as a function of their positions and densities, see Li 
and Oldenburg (1998). As described by Guillen et al. (2008), the likelihood is given by

where k is a normalization factor, and σ 2 is the variance of the data (i.e., measurement 
error), and S(y |msec) the L2-norm misfit with the gravity field, calculated as

(5)L(y |msec) = k exp(−S(y |msec)/σ
2),
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where gl(msec) represents the modeled gravity field at the point of observation l while 
yl represents the measurement of the gravity field at the same point. Based on analysis 
of repeated gravity measurements at different stations and uncertainty of 30 cm in the 
elevation measurements, the measurement error is estimated to be 0.1 mGal. However, 
this is likely an underestimation of the uncertainty of the gravity data, particularly in 
locations with a low spatial density of measurement stations, and we vary the measure-
ment error to 0.5 mGal (Case 4b).

According to the Metropolis rule, if the likelihood of a proposed model based on the 
calculated gravity response has a lower misfit with the measured data (higher likeli-
hood) compared to the previous model, the proposed model is accepted and stored for 
determination of the posterior statistics. Otherwise, a proposed model is accepted with 
a probability given by the ratio of its probability with the previous model. For all of the 
inversion runs considering geophysical likelihood (Cases 2–5), fifteen million iterations 
were carried out. We assess convergence of the Markov chain on the basis of the calcu-
lated misfit between the forward modeled gravity field and observed data (calculated as 
root mean square, RMS, Eq. 6). The value at which the RMS misfit stabilizes reflects the 
assumed measurement error of the gravity data. For inversion runs assuming a measure-
ment error of 0.1 mGal, we store models for calculation of posterior statistics after the 
inversion processed reduces RMS misfit to less than 0.15  mGal, which usually occurs 
within 1,000,000–1,500,000 iterations (Fig. 7a). Model realizations calculated before this 
misfit value has been reached are discarded as burn-in. Case 4b assumes higher meas-
urement error (0.5 mGal), and as a result the inversion process stabilizes the misfit at 
higher value ( ∼ 0.4).

Proposed model configurations are generated by changing the density or changing the 
lithology (and thereby, the bulk density) of randomly selected voxels. Thus, one of the 
key parameters controlling the inversion process is the probability that changes to lithol-
ogy are proposed. If the probability of lithologic changes is set to 0 (Case 2a), the litho-
logic structure of the reference prior model serves as a hard constraint on the geometry 
of the stratigraphic units in model realizations, and only the density of each voxel is 
changed according to the specified pdfs for each lithotype. In contrast, maximum vari-
ability in lithologic structure is attained by setting the probability of lithologic changes to 
100%, as is done for the ‘prior-only’ tests.

A density-only inversion (Case 2a) has a high acceptance rate ( ∼ 85%), and increas-
ing the fraction of proposed lithologic changes slightly decreases the overall accept-
ance rate (Fig. 7b). However, if commonality and/or shape ratio constraints are also 
assumed (Cases 3–5), more models with proposed lithologic changes are rejected, 
and the overall acceptance rate declines to 50–55%. The acceptance rate is somewhat 
higher if there is a higher assumed measurement error (Cases 4b and 4c), and lower if 
a smoother shape ratio constraint is assumed (Case 3d). The high rate at which pro-
posed geologic changes are rejected indicates a need for a long chain to adequately 
explore the lithology probability space. Link and Eaton (2012) suggest that a better 

(6)S(y |msec) =
1

2

N
∑

l=1

[gl(msec)− yl]2,
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approximation of posterior statistics for a chain exhibiting autocorrelation can be 
obtained by simply making the chain N times longer, rather than thinning the chain 
by only considering every N th sample. This accounts for the length of the MCMC 
chain in Cases 2–5 (15,000,000 samples).

The uncertainty of model predictions depends on the strength of the geologic 
constraints imposed on the probabilistic inversions. For a discrete variable such 
as litho-type, the uncertainty of probabilistic geologic models can be quantified by 
the information entropy metric. For each voxel, the information entropy is given by 
(Shannon 1948; Wellmann and Regenauer-Lieb 2012)

where x denotes the location of the voxel and M the number of possible exclusive mem-
bers (in this case, lithologies) the subregion can contain. The minimum entropy is 0, 
which indicates that a specific lithology has a probability 1 and that of all others is 0. The 
maximum entropy depends on the number of possible outcomes, and is found where the 
different possible lithologies are equally probable. The uncertainty of continuous vari-
ables such as bulk density can be characterized in terms of standard deviation.

Results
We present results for posterior probability distributions and uncertainty quantifica-
tion metrics along the three cross sections shown in Fig. 3 (Section 1, a N–S section 
going through Vitismor, Leirbotnar, and ending north of Hvítholar; Section 2, a SW–
NE section going through Vestursvaeð i, Leirbotnar, Hveragil and Vesturhlíðar; and 
Section 3, a NW–SE section going through Leirhnjúkur, Vitismor, Leirbotnar, Hver-
agil and Suðurhilíðar). We use perceptually uniform color maps to present the model 
results to avoid visual distortion of the data (Crameri 2018).

(7)H(x) = −

M
∑

m=1

πm(x) log(πm(x)),

ba

Fig. 7  Summary statistics for different inversion runs. a Evolution of root mean square (RMS) misfit between 
forward-modeled and observed gravity field over the MCMC inversion process for different inversion runs. b 
Overall acceptance as a function of the number of lithologic changes rejected as a share of total rejections, 
expressed as a percentage
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Comparison between observed and forward modeled gravity field

The inversion process reduces misfit between the forward modeled gravity potential 
field and the measured data. The range of the residual Bouguer anomaly calculated using 
the reference prior model and assuming mean bulk densities for each rock type (Fig. 8b) 
overlaps with the observed data (Fig. 8a), and predicts lower gravity values (2–4 mGal) 
in the SW between Leirbotnar and Vestursvæð i bordered by a gravity high to the W 
or Sudurhlidur, similar to the observed data set. However, other anomalies seen in the 
observed data are not resolved, such as the high gravity anomaly in the NE, where a 
gravity low is calculated by the reference model. After the inversion process, there is a 
close correspondence between the gravity field calculated for the changed model and 
the measured data (Fig. 8c), with the absolute misfit less than 0.3 mGal. Note that Fig. 8 
shows results at the end of Case 3a; the gravity field calculated varies slightly depend-
ing on the step in the inversion process and the run configuration. However, as shown 
in Fig.  7a, the absolute misfit values during the inversion process are nearly constant 
depending on the assumed measurement error of the gravity data.

Litho‑constrained inversion

The geologic constraints imposed on the inversion scheme determine the extent to 
which geologic prior information is reflected in posterior results. For a density-only 
inversion (Case 2a), the reference prior model serves as a hard constraint on model reali-
zations (Fig. 9a). However, if the inversion scheme is allowed to propose changes to the 
lithologic structure of the reference prior model without the use of commonality and/or 
shape ratio constraints (Case 2b and 2c), the lithologic structure of the reference prior 
model is lost in the posterior results. The most probable lithologic structure calculated 
by these inversion runs strongly differs from the reference prior model, most notably by 
predicting deeper basement intrusions, more extensive lava flows, and relatively minor 
hyaloclastites (Fig.  9b, c). Whereas for a density-only inversion the hyaloclastite units 
constitute distinct domains with low bulk density ( ∼ 2.2 g cm−3 ) within the higher den-
sity lava flows ( ∼ 2.6 g cm−3 ), there is a smearing out of low density zones in the upper 
2 km if lithologic changes are proposed to the reference prior model in the absence of 
other geologic constraints such as the commonality and/or shape constraint (Fig. 9d–f).
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A moderate commonality constraint causes the inversion process to retain the lith-
ologic structure of the reference prior model in the posterior results while also allow-
ing some significant differences (Case 3a, Fig.  10). For example, the regions of high 
posterior probability for hyaloclastite (Fig.  10a–c) and lava flow (Fig.  10d–f) coincide 
with the boundaries of the hyaloclastite and lava flow units described by the reference 
prior model. However, there is also a high probability of lava flow occurring beneath 
the lowermost lava flow unit L1, particularly beneath Vitismor, Hveragil and Leirbot-
nar (Fig. 10d–f). Accordingly, the most probable lithologic model (Fig. 10g–i) predicts 
a 0.1–0.2 km greater depth to basement throughout much of the model domain, with 
this discrepancy extending up to 1 km in the area, where the basement rock extends to ∼
1–1.5 km depth between Vitismor and Hveragil according to the reference prior model.

Due to the strong similarity between the lithologic structure of the posterior and the 
reference prior model, the calculated density structure assuming a moderate commonal-
ity constraint (Fig. 10k–m) is similar to that calculated by a density-only inversion, with 
strong contrasts preserved between the lithologic units. Hyaloclastites show a low mean 
bulk density ( ∼ 2.2 g cm−3 ) compared to the higher density lava flows ( ∼ 2.6 g cm−3 ) and 
basement intrusions ( ∼ 2.8 g cm−3 ). Comparing the posterior results for bulk density to 
lithology on Section 3 (Fig. 10m), it can be seen that the relatively low mean bulk density 
(2.5–2.6 g cm−3 ) near the top of the basement intrusions beneath Leirbotnar reflects the 
high posterior probability of lava flows occurring at such depths in this area.
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The effect of variable commonality and shape ratio constraint

The level of uncertainty of the reference prior geologic model can be quantified by the 
strength of the commonality and shape ratio constraints. Figure 11 considers the effect 
of commonality constraint on the uncertainty of posterior results. If a tight common-
ality constraint is assumed, hyaloclastite has a high probability of occurring within the 
hyaloclastite layers described the reference prior model (Fig. 11a), similar to a density-
only inversion. If the strength of the commonality constraint is lowered, voxel hyalo-
clastite probabilities become increasingly lower and more widely spread through the 
upper 1.5 km (Fig. 11b, c). The increasing uncertainty of the posterior as the common-
ality constraint is loosened is revealed by the higher information entropy (Fig. 11d–f), 
particularly along the lithologic boundaries and in areas with intermediate hyaloclas-
tite probabilities. Accordingly, the low mean bulk density of the hyaloclastite units at 
shallow depths become less distinct as the strength of the commonality constraint is 
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reduced (Fig. 11j–l), and the standard deviation of density at shallow depths increases 
(Fig. 11m–o).

The shape ratio constraint allows the roughness of the lithologic units to be controlled. 
However, the size and locations of the lithologic units can be different if a shape ratio 
constraint is used without a commonality constraint (Fig.  12). Figure  12a shows that 
the lithologic structure of the posterior is similar to the reference model if the lithologic 
units are assumed to be smoother than the reference prior model, indicating that the 
number of accepted lithologic changes is relatively low (Fig. 7b). If the lithologic units 
are assumed to have a similar roughness as given by the reference prior model (Fig. 12b), 
there are significant differences in the size and locations of lithologic units according 
to the most probable lithologic model compared to the reference prior model, and the 
lowermost hyaloclastite unit (H1) is not present. If lithologic units are assumed to be 
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Fig. 11  Effect of strength of commonality constraint on uncertainty of posterior results (Case 3a–c). Posterior 
results for (a–c) probability of hyaloclastite and (b–d) information entropy, (g–i) mean bulk density and (k–m) 
standard deviation of bulk density, for inversion runs with (a, d, g, k) tight commonality constraint (Case 3c), 
(b, e, h, l) moderate commonality constraint (Case 3b), (c, f, i, m) loose commonality constraint (Case 3a). 
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rougher than the reference prior model, the boundaries between the lithologic units 
become more jagged, as indicated by an increase in the contrast between the depth of 
the basement in Vestursvaedi and Leirbotnar (Fig. 12c). Similar to the commonality con-
straint, the information entropy increases as the shape ratio constraint favors increas-
ingly rough lithologic boundaries (Fig. 12e, f ).

The effect of assumed measurement error

In addition to the uncertainty of the reference prior geologic model, there is uncer-
tainty in the gravity data stemming from measurement error and limited spatial cov-
erage. Figure  13 shows how increasing the uncertainty of the gravity data from 0.1 
mGal (Case 4a) to 0.5 mGal (Case 4b), as specified by the measurement error ( σ 2 in 
Eq. 6), affects the posterior results for inversion runs with a moderate commonality 
constraint and a rougher shape ratio constraint. The posterior lithologic structures 
generally appears to depend little on the assumed measurement error (Fig.  13a–b). 
However, one notable difference is that hyaloclastites have a higher probability at 
1–1.5 km depth beneath Leirbotnar if a high measurement error is assumed (Fig. 13b). 
In this area, information entropy is up to 0.45, indicating a high uncertainty, even if 
the measurement error is assumed to be low (Fig. 13c–d).

Changing the prior properties and lithologic structure

The posterior distributions of bulk density and lithology change if higher density, altered 
hyaloclastites or a low density rhyolytic intrusion beneath the center of the caldera are 
considered in the reference prior model. On the left of Fig. 14a, results for most prob-
able lithology and mean bulk density are shown along Section 3 for the scenario with 
unaltered hyaloclastites, a moderate commonality constraint, a rougher shape ratio 
constraint, and a low measurement error (Case 4a). Changing the prior pdf for the 
bulk density of hyaloclastite to account for the effects of alteration (Case 5a) causes the 
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hyaloclastite at the top of the basement beneath Leirbotnar to expand to greater depths 
and towards the ESE (Fig. 14c). If the reference prior model also considers the presence 
of an oblate rhyolitic intrusion at 2 km depth beneath Vitismor and Leirbotnar (Case 
5b), with a horizontal and vertical axes lengths of 1.5 and 1 km, respectively, and a low 
density of 2.3± 0.1 g cm−3 (Bagdassarov and Dingwell 1994; Ochs and Lange 1999), the 
extent of the hyaloclastites at depth above the intrusion decreases compared to Case 5a.

Discussion
The uncertainty of the prior

Bayesian inversion of gravimetric data enables the use of subjective prior information to 
eliminate unreasonable models that may potentially fit the data. One of the challenges 
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of such inversion schemes is to specify the uncertainty of geologic prior information in 
such a way that both honors the geologic complexity and allows the inversion scheme 
to adequately explore the range of possible models that may be consistent with the data. 
Some approaches to probabilistic geologic modeling specify the uncertainty of the geo-
logic model in terms of prior pdfs for the contact point and orientation measurements 
(De La Varga et al. 2019; Wellmann et al. 2017). In this study, the reference prior geo-
logic model represents an interpretation of the subsurface lithologic structure. There-
fore, we specify the uncertainty of this prior model using probabilistic constraints on 
the expected location, size and shape of lithologic units (commonality and shape ratio 
constraints), and invert for voxel lithology and bulk density, rather than contact point 
and orientation measurements.

Our results document the strong control the uncertainty of the geologic prior exerts 
on the posterior results obtained by litho-constrained, Bayesian inversion of gravity data. 
Without constraints on commonality or shape ratio, the posterior lithologic structure 
shows little similarity to the prior, even if the vertical stratigraphic relationships from 
the reference model are respected (Fig. 9b, c). In contrast, if a tight commonality con-
straint (Fig. 11a) or smoother shape ratio constraint (Fig. 13a) is imposed, the posterior 
lithologic structure closely resembles the reference prior model, similar to a density-only 
inversion (Fig. 9a). We consider that the assumption of a moderate commonality con-
straint and rougher shape ratio constraint (Cases 4 and 5) respects the prior information 
while also allowing a degree of divergence between the prior and posterior in zones of 
high uncertainty, where the prior model may need to be revised.

Posterior results deviate from the reference prior model most notably beneath Leir-
botnar, Vitismor and Hveragil, where the inversion results predict hyaloclastites 
between 1–1.5 km depth and basement intrusions restricted to >2 km depth (Fig. 14). 
The hyaloclastites are predicted to extend laterally and to greater depths if high meas-
urement error of the gravity data is assumed (Fig. 13b), or if the prior pdfs for the bulk 
density of the hyaloclastite units are set to higher, more realistic values, reflecting the 
effects of high-temperature rock alteration (Fig. 14b). The predicted extent of the hya-
loclastites decreases slightly if a low-density rhyolitic intrusion at depth beneath this 
area (Fig.  14c). As there is direct evidence of shallow basement intrusion at depths 
> 1 km b.s.l. in this area from drill cuttings (Mortensen et al. 2014; Weisenberger et al. 
2015), we consider that the prediction of deep hyaloclastites in this area is erroneous. 
This reveals one of the disadvantages of an approach that assumes all voxels are equally 
uncertain, as the most uncertain areas predicted by the probabilistic inversion scheme 
may in fact be constrained by available hard data. In addition to the uncertainty of the 
geologic model, the uncertainty of hyaloclastite bulk density plays a large role in control-
ling model results in the area of the discrepancy. In calculation of the bulk density pdfs, 
we assume a uniform fluid density of 0.8 g cm−3 . However, circulating water expands to 
low densities ( < 0.4 g cm−3 ) as it is heated near subsurface intrusions (Scott et al. 2015), 
and vapor-rich boiling zones extending to up to 2 km depth may develop within upflow 
zones (Scott et al. 2016). Since the area between Leirbotnar and Hveragil coincides with 
the main upflow zone of Krafla system (Pope et al. 2016), considering a more realistic 
distribution of fluid density would likely reduce the subsurface bulk density in this area 
and potentially reduce the discrepancy.
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Implications for the Krafla system

The positive gravity anomaly associated with the Krafla caldera (Fig. 2) has been seen 
in other Icelandic volcanic systems (Gudmundsson and Milsom 1997; Gudmundsson 
and Högnadóttir 2007), and is typical of basaltic volcanoes generally (Williams and Finn 
1985). Previous gravity studies of volcanoes in the Northern Volcanic Zone of Iceland 
have linked the gravity highs to dense intrusions in the upper crust (de Zeeuw-van Dalf-
sen et al. 2006; Rymer and Tryggvason 1993; Rymer et al. 1998). However, Árnason et al. 
(2007) suggested that the local gravity highs at and inside the caldera rim at Krafla are 
not indicative of intrusions, as such steep gradients could only result from density con-
trasts at shallow depths (< 1 km). Instead, Árnason et al. (2007) suggested that the grav-
ity field mainly reflects variations in hyaloclastite thickness, and inferred the existence 
of a buried inner caldera, the focus of this study, containing thicker hyaloclastite and 
deeper basement than the outer caldera. Supported by early borehole data from showing 
deeper basement and thicker hyaloclastite in Hvitholar in the south (Ármannsson et al. 
1987), the WNW–ESE oriented gravity low transecting the caldera was posited to rep-
resent a transform graben, containing thicker sequences of hyaloclastite (Árnason et al. 
2007).

In this study, we suggest that gravity field at Krafla also reflects systematic differences 
in the spatial distribution of hyaloclastite density resulting from variable alteration. 
Fresh, unaltered hyaloclastite can show extremely high initial porosity and low bulk den-
sity (Fig. 4), However, hyaloclastite is weak and undergoes inelastic compaction at rela-
tively low effective pressures (Eggertsson et al. 2018), leading to porosity destruction and 
density increase (Frolova 2008). While lava flows or basement intrusions will undergo 
porosity closure at relatively small degrees of alteration (Thien et al. 2015), the high ini-
tial porosity of hyaloclastites allows near or complete alteration. Altered hyaloclastites 
show lower porosity and higher grain density (Fig.  4), particularly if subject to high-
temperature alteration in the chlorite, chlorite–epidote, or epidote–actinolite facies. The 
susceptibility of hyaloclastite to alteration suggests that a region of unaltered hyaloclas-
tite within a larger high-temperature geothermal system may be detectable as a grav-
ity low. Due to the processes of compaction and alteration, we consider the values from 
the tightly-constrained inversions to be an underestimation of hyaloclastite density. As 
most of the data shown in Fig.  4 originate from the samples obtained from exhumed 
geothermal systems at the surface or from shallow cores (< 0.5 km depth), this data may 
be poorly representative of hyaloclastite at greater depths.

Our models predict lower hyaloclastite densities within the transverse low gravity 
structure. Figure  15 shows a map view of the thickness of hyaloclastites according to 
the most probable model (Fig. 15a) and mean bulk density of hyaloclastites, calculated 
by averaging the mean density of all voxels in a vertical column with hyaloclastite as the 
most probable lithology (Fig. 15b) for Case 5b. Hyaloclastite thickness is predicted great-
est in the center part of the field, near Leirbotnar (Fig. 15a). While these hyaloclastites 
are predicted to be relatively high density, lower hyaloclastite density is predicted in the 
NW of the caldera, and within the WNW–ESE oriented gravity low, particularly in the 
southwest. We suggest that the low hyaloclastite density within the WNW–ESE oriented 
gravity low could be an indication of a lack of high-temperature alteration in this area. 
This is also suggested by the alteration data, which suggests an increase in the depth of 
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the smectite–zeolite zone in Sandabotnaskard (Weisenberger et al. 2015), as well as the 
resistivity structure of the system, which shows that the shallow low-resistivity cap rock 
does not extend in the area of the WNW–ESE-oriented gravity low structure (Gasperik-
ova et al. 2015; Rosenkjaer et al. 2015).

Transform structures with a WNW–ESE-orientation in the Northern Volcanic Zone 
develop as a result of the westward step-over in the rift that occurs north of Iceland. The 
dextral WNW–ESE-oriented Husavik-Flatey-Fault is believed to act a conduit for upflow 
in the Theistareykir system north of Krafla (Khodayar et al. 2018). At Krafla, the basaltic 
dikes and sills that make up the main heat sources are believed to originate from the 
WNW–ESE structure and incline towards the north (Weisenberger et al. 2015), result-
ing in the main upflow being located beneath Leirbotnar and Sudurhliðiur. Potentially, a 
buried WNW–ESE-oriented fault could divert fluids outflowing southwards away from 
the main upflow upwards. Such fault barriers to flow are commonly observed in geo-
thermal systems (Cumming 2016). This could explain the near-WNW–ESE alignment of 
hot springs along the southern margin of the central part of the field (Fig. 1). However, 
note that the gravity low is transected in the middle by a zone with higher gravity with 
the same orientation as the Hveragil fault. This fault could act a conduit for high tem-
perature fluid to the south, towards Hvitholar, where few production wells are located 
but some are productive.

Integration of geological, geophysical and hydrological data sets

This study quantitatively links a geologic model developed based on borehole evidence 
to observed geophysical data by assigning rock properties informed from laboratory 
studies to the main lithologic units. As previously studies have also found (Fedi and 
Rapolla 2002), gravity data alone is unable to resolve the thickness, spatial distribution 
and physical properties of lithologic units in the absence of strong a priori constraints. 
To improve resolution, joint inversion of gravity data with magnetic, seismic or mag-
netotelluric (MT) datasets can be performed, assuming structural similarities between 
the different geophysical domains (Oliver Ocaño et al. 2019; Soyer et al. 2017) or using 
geologically conditioned petrophysical constraints to link the different domains (Giraud 
et al. 2017). However, due to the inability to distinguish major rock types solely on the 
basis of rock properties, geologic conditioning of the inversions in the form of an a pri-
ori reference geologic model is essential (Olierook et al. 2019). The electrical resistivity 
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structure is particularly valuable for imaging geothermal systems (e.g., Cumming 2016), 
but is more closely linked to alteration than lithology (e.g., Cumming 2016). Therefore, 
it is essential that these prior models shoulder consider the distribution of alteration 
zones. Additionally, more data for the bulk resistivity of properties of Icelandic geother-
mal reservoir rocks (Lévy et al. 2018; Nono et al. 2018) is needed to better constrain the 
joint prior physical properties pdfs.

The distribution of fluid properties has a significant impact on measured geophysical 
signals in geothermal systems. Bayesian geophysical inversions schemes that specify het-
erogeneous fluid properties as part of the prior allow better deciphering of signals from 
MT inversions (Rosas-Carbajal et al. 2015). Probabilistic fluid flow models of geothermal 
systems commonly invert for the permeability structure and locations of heat sources, 
constrained by measured temperature and pressure data (Cui et al. 2011; Maclaren et al. 
2018). The distribution of temperature and fluid density from the fluid flow models can 
constrain the distribution of bulk rock density and resistivity for the gravity and MT 
inversions, respectively (Garg et al. 2007; Pearson-Grant et al. 2018; Rosas-Carbajal et al. 
2015). The development of models that honor all the available geological, geophysical 
and hydrological data will be challenging, but will provide deeper insight into the rela-
tionship between geologic structure and fluid reservoirs in geothermal systems.

Conclusions
This study presents a suite of probabilistic geologic models of the Krafla geothermal 
system constrained by measured gravity data. We combine a reference prior geologic 
model built from borehole data and statistical analysis of rock properties in a Bayesian 
inference framework to generate a probability distribution describing the distribution 
of major lithologies and the subsurface density distribution. This study investigates how 
varying the uncertainty of the prior affects posterior probabilities and uncertainty quan-
tification metrics obtained by probabilistic, litho-constrained inversion of gravity data. 
For geologically complex systems such as volcano-hosted geothermal systems, knowl-
edge of the structure and properties of the subsurface is not exact. More broadly, even 
the uncertainty of this knowledge is not very well known. Yet this uncertainty must be 
specified in the prior, both through the imposed geologic constraints, such as the com-
monality constraint, and the prior physical property distributions for each lithology. 
While rock petrophysical properties are measured in the lab may be known with some 
confidence, measured properties may be systematically biased as a result of the assump-
tion that rock samples collected at the surface are representative of rocks at depth. How-
ever, the greater uncertainty lies with the geologic structure.

A main advantage of Bayesian geophysical inversion methods is that subjective prior 
information can be used to constrain the subsurface structure. However, this study 
underscores that use of a probabilistic approach to geophysical inversion does not avoid 
the non-uniqueness problems associated with inversion of potential field data such as 
gravity data. The observed correspondence between the posterior results and the refer-
ence prior geologic model is largely a result of the imposed geologic constraints. That 
a priori beliefs about the uncertainty of the reference prior model exert such a strong 
influence on posterior results is seemingly at odds with the philosophy of Bayesian 
inversion, which aims to condition uncertain beliefs based observed data. However, a 
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non-informative prior (without the commonality constraint or with a very loose com-
monality constraint) results in an overly broad, geologically meaningless suite of mod-
els that may consistent with the data. Inversions with different reference prior geologic 
models and/or prior physical property distributions result in different ’most probable’ 
models, all of which match the observed data. Although posterior results are better 
thought of in terms of probabilities instead of a most probable model, the point remains 
that meaningful posterior results depend on having a reliable prior model for geologic 
structure. Thus, conventional geologic studies (mapping, lithologic analysis, correlation 
of stratigraphic measurements between boreholes) play an essential role in develop-
ing a meaningful prior that can be used for Bayesian inversion of geophysical data. This 
requirement may limit the utility of Bayesian inference techniques for systems for which 
only limited geologic data is available.
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