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Introduction
Contributions to the heat flow mapping of Colombia were reported in regional studies 
(IHFC 2008; Cardoso et al. 2010; Li et al. 2013; Davies 2013; Salazar et al. 2017). Previ-
ous studies were of a lower resolution and depicted long wavelength heat flow anomalies 
(IHFC 2008; Cardoso et al. 2010). Heat flow studies were reported for the Colombian-
Caribbean oceanic zone with no detailed work on Colombian territory (Salazar et  al. 
2017; Li et al. 2013).

However, a higher resolution heat flow map of the area comprising the Colombian-
Caribbean oceanic domain, and northern continental Colombia (Fig. 1) would be a con-
tribution to the study of the interaction of the Caribbean, and South American tectonic 
plates.

In particular, knowledge of the depth to the Curie isotherm (assumed to coincide 
with the depth to the bottom of magnetic sources, DBMS) will help to characterize the 
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thermal structure of the Colombian-Caribbean lithosphere, and in particular its rheo-
logical strength (brittle, or fluent crust). Furthermore, a more detailed heat flow map-
ping of the above-mentioned region will help to evaluate the potential of geothermal 
resources, as well as those of hydrocarbures, and to better understand the geologic and 
tectonic evolution of this region.

The study area comprises the north-western part of South America (Fig. 1). The area 
covers parts of the basins of Colombia and Venezuela as well as areas of Panama, and 
continental Colombian and Caribbean domains (Fig. 1). The area includes the conver-
gence zone of the Caribbean, South America, Cocos, and Nazca tectonic plates (Granja 
Bruña 2005). According to Salazar et al. (2017), the Caribbean plate subducts under the 
South American plate, while the Cocos plate subducts beneath the Caribbean plate.

The oceanic zone of the Caribbean Plate is approximately 10- to 15-km thick (Diebold 
et  al. 1981; Mann 1999). The average global oceanic crustal thickness is 6  km (Mann 
1999). An oceanic plateau is present in its interior, which is 12- to 15-km thick, of a tran-
sitional character, and with an approximately 2-km thick sedimentary cover. The conti-
nental zone presents thicknesses between 20 and 60 km (Salazar et al. 2017).

This study reports, for the described study zone, thermal gradient estimated from (1) 
surface temperatures, (2) Curie point depths (CDP), and (3) a Curie temperature of 580° 
corresponding to magnetite. The applied methods are described. Results are presented 
and analyzed.

Background
The geothermal gradient is a measure of how the temperature varies with depth. In a 1D 
Earth the geothermal gradient (Nondorf 2016; Sigismondi and Ramos 2008) and heat 
flow are related by the Fourier’s law (Abraham et al. 2015; Kasidi and Nur 2013):
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where q is heat flow, � is thermal conductivity, and dt/dz is the geothermal gradient. 
Temperature measurements at different depths along a borehole constitute the most 
common way to establish the geothermal gradients. At sea, the bottom simulator reflec-
tor (BSR) method enables one to estimate geothermal gradients at sea environments.

This method, proposed by Yamano et al. (1982), has been amply applied worldwide. 
The BSR is defined as the anomalous reflector that coincides with the stable zone of 
gas hydrate (López and Ojeda 2006; Ganguly et  al. 2000; Shankar and Sain 2009). 
According to Liao et  al. (2014), in low latitudes, methane gas hydrate is present at 
depths between 700 and 1000 m.

Depth to the Curie isotherm constitutes another tool to establish the geother-
mal gradient and the heat flow coming out of the mantle. According to Tanaka et al. 
(1999), Curie temperature ( θc ) can be defined as:

From Eqs. 1 and 2 heat flow ( q ) can be estimated in terms of the Curie temperature ( θ ) 
and depth to the Curie Isotherm, (Zb):

The Curie temperature of magnetite, 580 °C, is assumed for this study as the tempera-
ture at which crustal rocks lose their magnetic properties. In several studies (Abraham 
et al. 2015; Anakwuba and Chinwuko 2015; Kasidi and Nur 2013) this temperature was 
assumed. The Curie point depth (CPD) corresponds to the depth at which the rocks 
reach such a temperature (Tissot and Welte 1984). To estimate the CPD several spec-
tral statistical magnetic techniques have been developed to determine the DMBS, which 
are assumed to represent the Curie isotherm. Among them, the centroid and fractal 
methods that have been applied in Australia, the United States, China, Japan, and Tai-
wan (Bansal et al. 2011; Bouligand et al. 2009; Espinosa-Cardeña et al. 2016). Following 
a description is given of the BSR method and of the spectral statistical methods used to 
estimate the depth to the Curie isotherm in this study.

Methods
Spectral statistical methods

Statistical-spectral analysis of aeromagnetic data is based on the work of Spector 
and Grant (1970), Bhattacharyya and Leu (1975), Okubo et al. (1985). The developed 
methods enable one to determine the DBMS, which can be associated to the Curie 
point depth or CPD (Bansal et al. 2011).

The centroid method of Tanaka et al. (1999) is the most currently used method. It has 
been applied in Turkey (Dolmaz et al. 2005), Nigeria (Kasidi and Nur 2012), South Africa 
(Nyabeze and Gwavava 2016) and East and South East Asia (Tanaka et  al. 1999). The 
Fractal method has been applied in South Africa (Nyabeze and Gwavava 2018), Central 
India (Bansal et al. 2013), Western USA (Bouligand et al. 2009), Germany (Bansal et al. 
2011), Nigeria (Abraham et al. 2015) and Mexico (Espinosa-Cardeña et al. 2016).

(1)q = � dt/dz

(2)θ = [dt/dz]z,

(3)q = �

(

θ
/

Zb

)
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Centroid method

The centroid method is based on mechanical statistical principles (Spector and Grant 
1970), and on the assumption that the magnetic anomalies constitute an uncorrelated ran-
dom distribution of magnetic sources (Abraham et al. 2015; Bansal et al. 2010, 2011). The 
power spectrum of the reduced to the pole, magnetic anomalies is defined as (Blakely 1996; 
Spector and Grant 1970):

where h is the mean depth to the top of the magnetic source ensemble, t is the thickness 
of the magnetic ensemble, M is the magnetic moment, S2(k , a, b) is a function of the 
magnetic ensemble mean horizontal dimensions (a, b), k corresponds to the radial wave 
number in cycles/km, and Cm = 10−7 is the proportionality constant to transform Eq. (4) 
to the SI unit system (Blakely 1996). Zhou and Thybo (1998) determined that the radial 
power spectrum with or without reduction to the pole are virtually identical. Then, the 
radial power spectrum P(k) can be rewritten as:

where A1 is a constant, Zb and Zt are respectively the depths to the bottom and to the top 
of the magnetic body ensemble. By simplifying Eq. 5, the centroid depth of the magnetic 
source can be calculated from the large wavelengths spectrum zone (Bhattacharyya and 
Leu 1975, 1977; Okubo et al. 1985) by the following expression:

where A2 is a constant, ln is the natural logarithm, and Zo is the centroid depth. If it is 
assumed that the top signals of the magnetic ensemble dominate the high-medium fre-
quency portion of the spectrum, Zt can be obtained similarly from Eq. 5 (Bhattacharyya 
and Leu 1975; Okubo et al. 1985; Spector and Grant 1970) by the following equation:

where A3 is a constant, and Zt is the magnetic source top depth.

Fractal method

Gravity and magnetic fields follow a fractal behavior (Dimri and Ganguli 2019). Magnetic 
susceptibility (Fedi 2003) and crust magnetization, in particular, have fractal behaviors 
(Pilkington et al. 1994). Bouligand et al. (2009) used this magnetization model to estimate 
depths to the bottom of magnetic sources in southwestern USA.

The radial average power spectrum for a fractal distribution of the magnetic anomaly 
sources follows the relation:
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where Ec(k) is the corrected spectrum, ERP(k) is the spectrum reduced to the pole, k−∝ 
is the correction factor (Fedi et  al. 1997), and ∝ is the decay factor (Pilkington et  al. 
1994). Hence, the centroid depth can be obtained from the spectrum corrected for its 
fractal behavior by the following equation:

Similarly to the centroid method, one can calculate the depth to the mean top of the 
magnetic ensemble by combining Eqs. 7 and 8:

Fractal scaling factors between 2 and 4 have been used by Pilkington et al. (1994), Fedi 
et al. (1997), Maus et al. (1997), Bouligand et al. (2009), Salem et al. (2014) and Nyabeze 
and Gwavava (2018). Values of 3 and 1.5 over correct the spectrum according to Ravat 
et  al. (2007). According to Bansal et  al. (2011) a value of α = 2 works well, but Bansal 
et al. (2013) consider that the value that best corrects the power spectrum is α = 1.

In both methods,Zb results from a simple relationship (Bhattacharyya and Leu 1975, 
1977; Okubo et al. 1985) between ( Zt ) and ( Zo):

The BSR method

On marine seismic lines, the BSR results from the large acoustic impedance contrast 
between the hydrate gas layer above the BSR (high seismic velocity zone) and a under-
lying layer of free gas that constitutes a low-seismic velocity zone (Dong et  al. 2018). 
To calculate the geothermal gradient, the following steps are followed: (1) identification 
on the seismic lines of the reflectors corresponding to the sea floor and to the BSR, (2) 
depth conversion of the two selected seismic horizons, (3) conversion of depth to pres-
sure, (4) use of phase diagram to obtain the temperature corresponding to the previous 
estimated pressure, and (5) calculation of the geothermal gradient that implies dividing 
the temperature difference by the corresponding depth difference (Minshull 2011).

In practice, the geothermal gradient is calculated assuming a sea bottom temperature 
of 4 °C (Vohat et al. 2003), and making use of the equation developed by Yamano et al. 
(1982) and reviewed by Grevemeyer and Villinger (2001):

where

q is heat flow, k is thermal conductivity, �T  is geothermal gradient, TBSR is BSR tempera-
ture, Tsea is sea bottom temperature, ZBSR is BSR depth, and Zsea is sea bottom depth.

In this study, 250 time-migrated seismic lines, located mainly in the continental slope, 
were examined; of these, in only 20, the BSR could be identified. The sea bottom and 
the BSR were converted to depth using velocities of 1450  m/s for the sea water, and 
1850  m/s for the sediments (average velocity used in other converging zones, as for 
example Brown et al. 1996).
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For this work, the pressure to temperature conversion, was based on the phase-stabil-
ity diagram of Sloan (1998) because the obtained geothermal gradients are comparable 
to those reported by López and Ojeda (2006) for some locations of the Colombian-Car-
ibbean offshore zone.

Aeromagnetic data and processing

The magnetic data used in this study were taken from the World Digital Magnetic 
Anomaly Map V2 (WDMAM, http://www.wdmam .org/downl oad.php), approved by the 
International Association of Geomagnetism and Aeronomy (IAGA) in 2015 (Lesur et al. 
2016). In the first version of the map (Korhonen et al. 2007), for the marine part of the 
EMAG2 grid (Earth Magnetic Anomaly Grid), for those areas without data (Maus et al. 
2009), extrapolations were made based on the sea floor age map (Müller et al. 1997) and 
on a sea bottom expansion model (Dyment et al. 2015). Version 2 (Li et al. 2013) involves 
tectonic plate movements, and voids in continental information were covered with syn-
thetic data arising from the lithospheric field model GRIMM_L120 (Lesur et al. 2016). 
The internal magnetic field was eliminated through an extensive model (Sabaka et  al. 
2004), that includes spherical harmonics up to the 13th degree to avoid magnetic con-
tributions from the core (Ravat et al. 2007). In this way, wavelengths larger than 500 km 
were excluded, in particular, from the Colombian-Caribbean magnetic data (Fig. 2). This 
assures that no magnetic sources that may not correspond to CPD are present in the 
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data. Similar procedure was applied to the data used by Bouligand et al. (2009) to deter-
mine the CPD for southwestern USA. Models elaborated in a similar way have provided 
good results in determining Curie isotherm (Bouligand et al. 2009; Manea and Manea 
2011; Espinosa-Cardeña et al. 2015).

The optimal window size to estimate Zb should be carefully selected. The maximum 
CPD is limited by 2π/L, L being the window size length (Campos-Enriquez et al. 1990; 
Campos-Enríquez et al. 2019). Window sizes between 4 and 10 times the depth to the 
source have been used by Ross et al. (2006), Bouligand et al. (2009), Chopping and Ken-
nett (2015), Vargas et al. (2015). However, windows of more than 200 km could include 
contributions of different tectonic and geological environments (Ravat et  al. 2007) 
and because of this Bansal et al. (2011), (2013) and Saibi et al. (2015) recommend win-
dows of 200 × 200 km. Windows of 100 × 100 km provide good resolution but shallow 
Zb as reported in several studies (Ravat et al. 2007), windows of 300 × 300 km provide 
lower resolution and emphasizes long wavelength trends (Li et  al. 2013). Windows of 
200 × 200 km enabled to obtain intermediate resolution, avoiding regional tendencies.

For the (Fig. 2) the square windows of 100 × 100 km, 200 × 200 km, and 300 × 300 km 
were used for Colombian-Caribbean studies. The respective radial anomaly power spec-
trums were obtained from the magnetic anomalies contained in such windows. Then 
the corresponding DBMS were estimated. The centers of these windows form a grid of 
50 km in east–west direction, and 50 km in the north–south direction. Geosoft Oasis 
Montaje was used to obtain the average radial power spectrum of each window. Regional 
trends were removed, the grids were expanded 10% by the maximum entropy method to 
eliminate edge effects. FFT was used to obtain the power spectra.

The CPD depths were estimated following the centroid method (Eqs. 6 and 7), and 
the fractal method (Eqs.  9 and 10) with a fractal parameter α = 1. With this value, 
the different spectra zones were well defined, in particular the low wavelength part 
of the spectrum that provides information on the bottom depth, Zb. At posteriori, 
results confirmed it was a good choice.

Selection of the two spectrum domains to estimate the top or bottom depends on 
the interpreter judgment based on study area geology (Bansal et  al. 2011). In this 
work, three slopes (maximum, minimum, and intermediate) were selected, in each 
domain, and used to estimate the respective CPDs. The respective average CPD 
and the corresponding difference (in %) were calculated. Generally, the obtained 
spectra can be classified in two categories. In one group, spectra present clearly 
defined zones or domains, in the other group, the long wavelength spectra domain 
is not clearly defined; when analyzing these latter spectra, various estimations were 
made until a realistic estimation aroused (Bansal et  al. 2011). It was assured that 
the estimated depths were consistent with bathymetry (oceanic zone), topography 
(continental zone), and crustal thickness, and available geological and geophysical 
information.

CPD estimations obtained from each method (centroid and fractal) were checked 
for outliers along W-E and N-S profiles. If outlier values were detected then the cor-
responding spectra was re-analyzed and depths re-estimated. In this way all outli-
ers were eliminated. Subsequently, values were interpolated by means of a minimum 
curvature method, and again the resulting values were checked for outliers.
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Results and discussion
Figure 3 shows estimated CPD (Zb) examples for ocean and continental zones (respec-
tively parts 1 and 2 of the figure) obtained using the centroid and the fractal methods. 
Points and lines in green correspond to Zt, those in red are related to Zo. The spectra 
are presented just up to a wave number of 0.1 because it is the interest zone where 
the CPD is defined (De Ritis et al. 2013; Salem et al. 2014). Although, as these exam-
ples show, Zb estimations by both methods are consistent, centroid method provided 
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underestimated depths. Similar result has been reported by De Ritis et  al. (2013), 
Hussein et al. (2013), and Li et al. (2013).

Curie point depth map

The Colombian-Caribbean Curie Point Depth maps (Fig.  4) show that the Curie iso-
therm lies between 18 km and 47 km in the continent. Depths in the oceanic area were 
between 13 km and 27 km. These estimations are within the range of reported crustal 
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thicknesses, between 20 and 60  km for the Colombian Caribbean and northwestern 
Venezuela as reported by Salazar et  al. (2017). The depths were consistent with those 
reported in the Global Reference Model of Curie Point Depths (Li et al. 2017). The Curie 
point isotherm is located in the lower crust.

Differences in percentage were calculated at each grid point for the CPD maps 
obtained by the fractal method (Fig. 5a), and by the Centroid method (Fig. 5b). The larg-
est differences correspond to the centroid method (between 20 and 30%); while for the 
fractal method the dominant differences are in a range between 4 and 8%. Because the 
values of differences in percentage by the fractal method are lower, they were considered 
more reliable, and proceed to elaborate the Curie point depth map based on these.

Geothermal gradient map

The geothermal gradient anomaly map (Fig. 6) indicates that geothermal gradients in the 
offshore zone of Colombian-Caribbean region vary between 44 and 20 °C/km, while in 
the continent, values range between 24 and 14 °C/km; an atypical maximum of 39.5 °C/
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km stands out in the area amid Barranquilla, Sabanagrande and Cartagena (indicated in 
Fig. 6 by 1, 2, and 3, respectively). Intermediate gradients are observed associated with 
the offshore Guajira basin, in the central part of the Colombia basin, in the Magdalena 
river delta, and outstanding low gradients in the Plato sub-basin (in the Lower Magda-
lena Valley) and in the Uraba basin (indicated in Fig. 6 by numerals 6, 7, 8, 9, and 10, 
respectively). For the Colombian Guajira and the Gulf of Maracaibo in Venezuela (4 and 
5 respectively in Fig. 6), Arnaiz-Rodríguez and Orihuela (2013) reported larger CPD val-
ues that are consistent with these low gradients. The map of this study (Fig. 6) is featured 
by similar values and patterns as the geothermal gradient map of Salazar et al. (2017). 
As has been discussed before, the geothermal gradient map reliability for the Colom-
bian-Caribbean area is supported by the close agreement, in the offshore zone, with 
geothermal gradients estimated by the BSR method and, in the continental zone with 
1140 records of Bottom Hole Temperature (BHT). Thus, CPD-based gradient estima-
tions here obtained are a reasonable and accurate estimation of the geothermal gradients 
in the study area.

Estimation of geothermal gradient by the BRS method were based on the phase-stabil-
ity diagram of Sloan (1998) of Fig. 7. In Fig. 8 are compared geothermal gradients calcu-
lated from Curie point depths obtained by the centroid method corrected for the fractal 
behavior (red lines) with geothermal gradients obtained by following the BSR method 
(blue lines). Their mean difference is annotated, the broken black line represents the 
geothermal CPD-based gradient corrected for this difference; the corresponding seismic 
line number is indicated in parentheses (see its location in Fig. 2). The mean differences 
vary between − 1.5 and 10 °C/km. In two cases the difference is zero.
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Vargas et  al. (2009) calculated geothermal gradients for Colombia based on bottom 
hole temperature data set. The objective of the map was to assess geothermal potential 
zones in continental Colombia. This data set was used here to assess the reliability of the 
CPD-based geothermal gradients. Figure 9 shows the geothermal gradients estimations 
derived from depths obtained by the centroid-fractal method (red lines) and those cal-
culated from BHT values (blue lines). Differences range from 8 to − 10 °C/km. Broken 
black lines represent gradients calculated by the centroid-fractal method, but corrected 
for these differences. The magnitude difference varies at the different zones (zones a to 
h indicated in Fig. 2). In zones b, c, and f, both types of gradients, present no statisti-
cally meaningful differences, which means that there is a good relationship between the 
gradients in each of these zones (b, c, and f in Fig. 9); in zones a, d, and e, the BHT gra-
dient is larger than the fractal method based gradient (8, 5, and 6 °C/km, respectively), 
which could be explained by the thick sedimentary cover in these zones; in zones g and 
h, the BHT gradient is about 10  °C/km less than the estimated gradient based on the 
fractal method, a situation that could correspond to a shallower crust in the coast line, 
and also possibly to effects of shallow water circulation. However, in general, it is note-
worthy that these gradient differences are within the residual error ranging between 5 
and 15 °C commonly reported in detailed studies based on the BHT at depths close to 
3000 m (Sigismondi and Ramos 2008).

Note that the gradient can increase or decrease with respect to depth (respectively 
Figs. 9i, j), which could be explained by various mechanisms, such as water circulation. 
The above comparison analysis indicates that the CPD-based geothermal gradients are 
consistent within acceptable errors with gradients obtained by the BSR method (in the 
sea zones) and from BTH (in the continental areas). The very good correlation lends 
reliability to the Curie depth estimated, and derived geothermal gradient and heat flow 
estimations.
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Heat flow map

The heat flow values used to elaborate the map of Fig. 10 were obtained using the Curie 
point depths of Fig. 4, and a mean average thermal conductivity of 3.0 W/m °C. Accord-
ing to this map (Fig. 10), the Colombian-Caribbean area is characterized by higher val-
ues in the offshore zone than on the continent. In the sea zone, the values vary between 
80 and 100 mW/m2; with an atypical relative low of 60 to 80  mW/m2 located off the 
center of the Colombian Basin. In the transition zone between the oceanic and conti-
nental zones, there is a conspicuous change from 100 to 60 mW/m2, the last value cor-
responds to the average for the continental Colombian–Caribbean domain.

The International Heat Flow Commission (IHFC 2008) heat flow map, character-
izes the Panama region with values from 85 to 120 mW/m. A very similar pattern is 
observed in the heat flow map presented here, however, with a smaller range of heat 
flow values (70 to 100  mW/m2). According to the IHFC map, the entire Colombian 
Caribbean is featured by values varying smoothly around 85  mW/m2, a value close 
to the onshore and offshore areas average. The heat flow map for the South Ameri-
can sub-continent (Cardoso et  al. 2010) is characterized by values ranging from 60 
to 80  mW/m2. Both values and regional trends of this continental map can be also 
observed in the continental part of the map elaborated in this study. The heat flow 
map proposed in the framework of North Atlantic thermal evolution study (Li et al. 
2013) reports for the Colombian Caribbean offshore zone, values between 15 and 
60  mW/m2, which are consistent with the results from this study. Davis’s heat flow 
map (Davies 2013) proposes higher heat flows in the continental crust with respect to 
the oceanic crust, which contrasts with most of the published maps. This analysis of 
available heat flow maps indicates that the elaborated map is a valuable contribution 
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to the heat flow studies in northeastern South America by adding reliable estimations 
and more resolution to the mapping of the heat flow anomalies in the continent as 
well as in the oceanic part of the study area.

Magnetic anomalies in the Colombian-Caribbean region present two textures. In 
the oceanic zone, the high frequency character of the anomalies convey a rugged tex-
ture that contrasts with the smoother magnetic anomalies (longer wavelength anom-
alies) of the continent. These two contrasting zones find a good correspondence in 
the Curie isotherm map. The shallower CPD are located in the oceanic domain. The 
continent is characterized by larger CPD. The geothermal gradient map is observed to 
hold an inverse relationship between depth to the Curie isotherm (CPD) and the geo-
thermal gradient magnitude. Geothermal gradients in the Colombian oceanic zone 
are between 32 °C/km and 43 °C/km. However, low values of 27 °C/km in the Colom-
bia basin and the Magdalena Delta have been found. These values might be due to a 
thickening of the oceanic crust, or to large sedimentary cover in those areas. In the 
ocean zone, a high heat flow is observed at the Beata Ridge that separates the basins 
of Colombia and Venezuela.

The basins of Plato and San Jorge in the lower Magdalena Valley, and in Maracaibo 
(Venezuela) are featured by geothermal gradients of 16 and 19  °C/km, respectively. 
Lower values probably associated with the large sedimentary infilling of these basins. 
Patterns on the heat flow map correlate very well with major tectonic features of the 
Colombian-Caribbean region. The folded and deformed Belt of Southern Caribbean 
(SCDB), possibly constituting the contact zone between the Caribbean and South Amer-
ican plates, is characterized by large heat flow values around 100 mW/m2 and by a geo-
thermal gradient that decreases landward. This gradient attains 70 mW/m2 on the litoral 
of Colombia and Venezuela and could be interpreted as due to the Caribbean plate sub-
duction beneath the South American plate.

On the continent, the lowest heat flow values were observed between the Santa Marta-
Bucaramanga Fault and the Oca Fault. Heat flow could be due to the Caribbean plate 
subduction beneath the South American plate. Low heat flow values, 40  mW/m2, are 
associated with the Venezuelan Andes.

Conclusions
The centroid method provided CPD estimations with larger percentage differences than 
its fractal modification. Centroid-fractal based CPD were considered more reliable estima-
tions. The CPDs for the Colombian-Caribbean offshore zone range between 13 and 29 km. 
The maximum CPD is located off the Colombia basin center with a depth of approximately 
23 km. This depth could be associated to a large sedimentary cover. In continental Colom-
bia CPD depths vary between 20 and 44 km. The deepest CPD is located in continental 
Venezuelan, at a depth of 47 km. In the oceanic domain, CPDs are located at the bottom of 
the oceanic crust or immediately below. On the continent, the depths are consistent with 
reported thicknesses of the complex crust beneath Colombia. The respective and more 
detailed Curie point depth map reproduces with more detail trends already observed in 
previously reported Curie depth maps for continental Colombia. These depths to the Curie 
isotherm were used to estimate the geothermal gradient map presented here.
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Comparison analysis with geothermal gradients obtained by the BSR method for oceanic 
zones, and from bottom hole temperature data for continental areas confirms the reliability 
of CPD-based geothermal gradients. Differences between geothermal gradients estimated 
by the BSR method and by BHT measurements on one hand, and gradients estimated from 
the fractal method based CPDs on the other hand, were between 4 and 10 °C/km in Carib-
bean Sea areas, and between 2 and 10 °C/km on land. These low differences indicate that 
gradients are reliable, and within error limits world zones of less than 20%. These differ-
ences might be due to local effects of heat flow and recent sedimentation.

There was a good correlation between the obtained geothermal gradient and known val-
ues for the Colombian-Caribbean zone. Application of the centroid-fractal method in the 
Caribbean-Colombia domain, as well as in other areas of Colombia might contribute to the 
study of the thermal and geologic structure of the crust and upper mantle, as well as helping 
to assess areas with geothermal and oil potentials.

Abbreviations
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