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Background
Geothermal resources are a part of the U.S. energy portfolio for moving toward a cleaner 
energy system, according to the Department of Energy Strategic Plan for 2014–2018. The 
largest operating geothermal reservoir is The Geysers located in the US. Other countries 
in Europe (Arola et al. 2014; Schintgen 2015; Rolker et al. 2015) and Asia (Kong et al. 
2014; Singh et al. 2014) also explored the possibility of using geothermal reservoirs at 
large scale. Improving energy recovery from geothermal reservoirs (Jain et al. 2015) is 
possible by gaining a better understanding of the energy transfer through these environ-
mentally friendly resources.

Heat transfer through convection to the flowing fluid is dependent on geometrical fea-
tures, such as wetting surface and residing time (Bird et al. 2007). There have been major 
advances in understanding physics of the heat transfer for a single conduit at small scale 
(Guo and Zhao 2005; Pinson et al. 2007; Laguerre et al. 2008) but applications of such 
understanding remained limited to synthetic pore space where the topology of the pores 
is well described (Magnico 2009), or simplified (Willingham et al. 2008). One of the main 
reasons for the lack of knowledge in the area of heat transfer at pore-scale, unlike fluid 
flow which is fairly developed, is the absence of a realistic pore model that can be easily 
incorporated with our basic knowledge in heat transfer.

Void space and solid grains (non-void regions) constitute the porous medium. We sup-
pose that the void space is not a continuum medium distributed over the entire rock in 
the pore-scale modeling approach. The pore-scale models classify the void space into 
pores, or pore bodies, and pore throats, and then investigate the interactions between 

Abstract 

Heat convection at pore‑scale, which is strongly dependent on the topology of pore 
space, remains poorly understood for geothermal reservoirs. This is despite fundamen‑
tal advances made in modeling heat transfer in nano‑ and micro‑scale conduits. With 
this in mind, we analyze the fractality of the pore space of The Geysers to fully char‑
acterize its topology. We consider circular and slit‑like throat geometries to represent 
aspect ratios close to unity and infinity, respectively. Our study shows that the effective 
length of pore space follows the general fractal rule. This study can have major implica‑
tions for understanding heat convection at pore‑scale by presenting a representative 
fractal model for The Geysers.

Keywords: The Geysers, Fractal dimension, Acyclic pore model

Open Access

© 2016 Sakhaee‑Pour. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Sakhaee‑Pour  Geotherm Energy  (2016) 4:1 
DOI 10.1186/s40517‑016‑0043‑y

*Correspondence:   
sakhaee@ou.edu 
Petroleum and Geological 
Engineering, The University 
of Oklahoma, Norman, OK, 
USA



Page 2 of 10Sakhaee‑Pour  Geotherm Energy  (2016) 4:1 

the pores. The interactions between the pores occur through the pore throats, which are 
often considered the narrowest region of the void space between two neighboring pores. 
The spatial distribution of the throats and their characteristic size control the transport 
properties.

There are few theoretical pore models that account for the effective connectivity of 
the pore space at core scale. The characteristic size of the pore is usually on the order of 
microns or smaller, while the size of the core is close to few centimeters. The difference 
between the two sizes underscores the importance of upscaling from the small scale to 
the large scale. The upscaling phenomenon is a well-known problem in transport phe-
nomena with few analytical models for the effective connectivity of the pore space. The 
scarcity of theoretical models implies the difficulty of finding realistic theoretical mod-
els. Pore models that are solely based on high-resolution images are limited to a small 
region of the porous medium, much smaller than the size of a core, and they are not 
necessarily relevant to the effective connectivity at the core scale.

The first theoretical pore model was invented nearly a century ago when bundle of 
tubes were used to represent the void space inside a porous medium (Washburn 1921). 
The bundle-of-tubes model was crucial for the development of the field of pore-scale 
modeling because its simplicity was appealing (Purcell 1949). Researchers have revised 
the bundle-of-tubes model to account for the fractal features of pore space (Cai et  al. 
2010; Cai and Yu 2011), which allow them to capture imbibition more accurately. The 
next theoretical pore model appeared three decades later when the interconnectivity of 
pores was included by using a regular lattice model (Fatt 1956). Sphere-packing, or pack 
of beads, also accounted for the interconnectivity of pores based on the hypothesis that 
the random distribution of the spheres is representative of grains or sedimentary rocks 
(Finney 1968).

The notion of interconnectivity with random distribution of the spheres was crucial 
for explaining different transport properties of porous media, such as two-phase perme-
ability (Bryant and Blunt 1992), three-phase permeability (Blunt 2001), drainage (Mason 
and Mellor 1995; Prodanovic and Bryant 2006), gelation in porous media (Thompson 
and Fogler 1997, 1998), and the flow of non-Newtonian fluids (Balhoff and Thompson 
2004, 2006), especially for unconsolidated sands (Harris and Morrow 1964). This notion 
which led to the random distribution of the pore size on the network is not necessarily 
realistic for tight formations (Mousavi and Bryant 2012). The spatially random distribu-
tion of pore size leads to a plateau-like trend of capillary pressure with wetting phase 
saturation which was used for explaining percolation in porous media (Sahimi 1994). 
The plateau-like trend is usually absent in tight gas sandstones (Prodanovic et al. 2013; 
Mehmani and Prodanovic 2014).

The present author, with his colleague, developed two theoretical pore models for the 
effective connectivity of the pore space in tight formations (Sakhaee-Pour and Bryant 
2014). The effective connectivity of pore space in tight gas sandstones can be modeled 
using a multi-type model which embraces regular lattice and tree-like configurations. 
For shales (Sakhaee-Pour and Bryant 2012; Kethireddy et al. 2014; Eshkalak et al. 2014; 
Saneifar et al. 2015; Yu and Sepehrnoori 2014; Qajar et al. 2015), we can use the acy-
clic pore model (Sakhaee-Pour and Bryant 2015) in which there is a single path between 
any two points in the pore space. The acyclic pore model can be characterized by using 
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fractal rules which can provide a convenient basis for understanding transport phenom-
ena at pore-scale.

Fractals, which are self-similar patterns, provide convenient mathematical bases for 
describing complex features; this is one of the reasons that they find different applica-
tions. Examples of such applications are diverse, ranging from globalization (Karpiarz 
et al. 2014), to ultra-stiff materials (Oftadeh et al. 2014), to superfluid turbulence (Kivo-
tides et al. 2001), and to earthquakes (Sahimi et al. 1992). They have also been used for 
analyzing transport in porous media (Mandelbrot 1983; Katz and Thompson 1985; Rad-
linski et al. 1999; Coleman and Vassilicos 2008). The general rule of fractals is that the 
total volume and the length are related to the characteristic size as follows:

where L is the fractal length, δ is the characteristic size, Dl is the fractal dimension that 
controls the length, V is the volume, and D′

l
 is the fractal dimension that controls the 

volume. These equations are often referred to as the general scaling rules of the fractals.
Researchers have also used the general fractal rule to describe tortuous porous media. 

For this reason, they accounted for tortuosity as follows (Cai et  al. 2010; Cai and Yu 
2011):

where Lf is the actual length of the pore space in which flow travels, Ls is the straight-
line distance between the traveled points, and DT is the tortuosity fractal dimension. The 
ratio of the two lengths defines tortuosity 

(

=

[

Lf

/

Ls

]2
)

. The tortuous fractal model sim-
plifies to the bundle-of-tubes model when the tortuosity fractal dimension is equal to 
unity. The tortuous model for the pore length (Lf) becomes identical to the general frac-
tal model for length (L) if LDT

s  is a constant coefficient, and tortuosity fractal dimension 
(DT) is set equal to the fractal dimension that controls the length (Dl).

This paper analyzes fractal properties of The Geysers using the general fractal rules 
(Eqs. 1a, 1b) to characterize its pore space. The drainage data available in the literature 
will be used for this reason. Our main objective is to determine the fractal dimension of 
the pore length to build a representative fractal model. We will also compare the fractal 
dimensions relevant to the pore length (Dl) and pore volume (D′

l
).

Methods
Capillary pressure measurements of The Geysers

We turn to analyzing the drainage data of The Geysers samples. Drainage takes place 
when the non-wetting phase displaces the wetting phase, which is obtained by injecting 
mercury into the samples (Fig. 1). Mercury is the non-wetting phase to the pore space 
and air, or mercury vapor, is the wetting phase. The samples were recovered from dif-
ferent wells (Li and Horne 2006) of The Geysers geothermal field, which is the largest 
geothermal field of the world. The Geysers field is located in Mayacamas Mountains, 72 
miles north of San Francisco, California.

(1a)L(δ) ∝ δ1−Dl

(1b)V (δ) ∝ δ3−D
′

l ,

(2)Lf(δ) = L
DT

s δ1−DT ,
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The capillary pressure, by definition, is equal to the difference between the pressures 
of the non-wetting and wetting phases: Pc = Pnw − Pw, where Pc is the capillary pres-
sure. The subscripts nw and w denote non-wetting and wetting phases, respectively. This 
definition lets us relate the capillary pressure to the mercury pressure by assuming negli-
gible wetting phase pressure. The wetting phase saturation is also determined from mer-
cury volume injected into the sample at each capillary pressure as follows:

where Sw is the wetting phase saturation, Snw is the non-wetting phase saturation, VHg is 
the volume of mercury injected into the sample, and Vp is the pore volume.

Results and discussion
Fractality of The Geysers

We investigate fractality of the pore volumes of The Geysers samples whose drainage 
data are shown in Fig.  1. For this purpose, we analyze the variation of the total pore 
volume invaded at each capillary pressure, with the characteristic size of the pore space. 
The pore volume invaded at each capillary pressure is equal to the mercury volume 
injected into the sample and its pore size is determined using the Young–Laplace rela-
tion as follows:

where C is the curvature, σ is the interfacial tension between the phases, and θ is the con-
tact angle between the two phases. The curvature is a geometrical parameter: C = 2/r for 
circular, and 1/h for slit-like conduits in which r is the radius of the throat and h is the 
height of the slit.

Figure 2 shows variation of pore volume with throat radius. We list the corresponding 
fractal dimensions of the samples, which agree with the data in the literature, in Table 1. 

(3)Sw = 1− Snw = 1−
VHg

Vp
,

(4)Pc = Pnw − Pw = σ C cos (θ),
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Fig. 1 Variation of the capillary pressure with wetting phase saturation obtained from the mercury intrusion 
experiment (Li and Horne 2006) in The Geysers samples
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The results are normalized versus total pore volume. The calculations are based on the 
premise that the accessibility of the pore volume is controlled by capillarity. No assump-
tion is invoked for the effective connectivity of the pore space; thus, the results are rel-
evant to the pore volume and the transport properties relevant to the flow.

In the present study, we determine the fractal dimension relevant to the pore volume 
using a single fitting parameter (Eq.  1b) by accounting for the volume of non-wetting 
phase injected. However, the values reported in the literature (Li and Horne 2006) are 
based on capturing capillary pressure measurements using three fitting parameters in 
a model that is identical to the Brooks–Corey model (1964) when the fractal dimen-
sion is smaller than three. The difference between the numbers of parameters can lead 
to the difference observed between the fractal dimensions (D′

l
) listed in Table 1 for each 

sample.
Next, we suppose that the pore space of The Geysers can be captured using a con-

nected network of circular or slit-like conduits. We denote the characteristic sizes of 
circular and slit-like conduits by r and h, respectively. Hence, we model the total pore 
volume invaded during the drainage as follows:
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Fig. 2 Variation of the normalized pore volume with throat size that is accessible to the non‑wetting phase 
during drainage for The Geysers samples whose drainage data are shown in Fig. 1. Table 1 lists the fractal 
dimensions of the samples relevant that control the pore volume (D′

l
)

Table 1 Fractal dimensions of  The Geysers samples whose capillary pressure measure-
ments are shown in Fig. 1. The range of the length scale used for fractal characterization is 
also listed

Sample# 1 2 3 4 5 6

Name (Li and Horne 2006) SB15D_1 MLM_3 Pc_92 SB15D_2 PRATI_5 CA1862_4

D
′

l
 (Li and Horne 2006) 4.12 4.069 3.957 3.483 3.224 3.188

D
′

l
4.196 3.802 3.917 3.451 3.326 3.268

Dl‑circular 3.891 3.176 3.529 3.364 2.905 2.764

Dl‑slit 2.895 2.386 2.657 2.388 1.985 1.862

Range of length scale (μm) (0.010, 0.074) (0.010, 0.074) (0.010, 0.297) (0.010, 4.954) (0.010, 0.297) (0.010, 
0.746)
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where VHg is the mercury volume injected into the sample, the subscript i denotes the 
capillary pressure increment, ri is the radius of the circular conduit, hi is the height of 
the slit, and li is the corresponding length of the conduit. The characteristic size of the 
conduit (ri or hi) is dependent on the capillary pressure based on the Young–Laplace 
equation (Eq. 4).

Now, we investigate fractality of the pore length of The Geysers. For this purpose, we 
first determine the total pore length obtained from Eq. 5a and normalize the results for 
the sake of comparison. Figure  3 shows that the total pore length follows the general 

(5a)VHg =

∑

i

∆Vnw ∝

∑

i

r
2
i li circular

(5b)VHg =

∑

i

∆Vnw ∝

∑

i

hili slit-like
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Fig. 3 Variation of the normalized pore length, accessible to the non‑wetting phase, with characteristic 
size for The Geysers samples whose capillary pressure measurements are shown in Fig. 1. The results are 
presented for a circular and b slit‑like throat geometries. Table 1 lists the corresponding fractal dimensions 
(Dl‑circular and Dl‑slit)
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scaling rule of the fractals whose fractal dimensions are listed in Table 1. The results are 
more compatible with the general scaling rule compared to the pore volume presented in 
Fig. 2.

The fractal dimensions in this study are determined using a statistical multiple non-
linear regression model (Mendenhall et al. 1989). The accuracy of this model is meas-
ured based on the multiple coefficient of determination, R2, where 0 ≤ R2 ≤ 1. Table 2 
lists this coefficient for the fractal dimensions relevant to the pore volume and pore 
length. This coefficient is larger than or equal to 0.96 for the pore length, indicating the 
compatibility of the model with the fractal general rule. This number decreases when 
evaluated for the pore volume, which indicates its deviation from the fractal general rule.

Our analysis indicates that the fractal dimension of the network of slit-like conduits is 
smaller than that of the circular conduits for each sample. Compare Dl-circular with Dl-slit 
in Table 1. The difference between the fractal dimensions suggests that the pore length 
of the slit-like pores is smaller than that of the pores whose aspect ratios are close to 
unity for a given characteristic size. This can have major implications for predicting heat 
transfer through heat convection at pore-scale in The Geysers. The heat convection is 
dependent on the wetting surface and residing time. The wetting surface is dependent 
on the pore length, while the residing time is dependent on the characteristic size of the 
conduit controlling the flow conductance.

Table 1 reveals that the fractal dimension is dependent on whether we use pore vol-
ume or pore length for our analysis even in a single pore model. D′

l
, which is based on 

the analysis of the pore volume, is different from the fractal dimensions obtained from 
the pore length (Dl−circular and Dl-slit). Thus, using a single fractal dimension for describ-
ing different aspects of the pore space of the geothermal resource is not accurate.

The fractal dimension is an indicator of the complexity of a topology. The greater com-
plexity corresponds to the greater heterogeneity of pore space. The fractal dimension 
that controls the pore volume (D′

l
) is always larger than that of the pore length (Dl-circular 

and Dl-slit) for the samples analyzed. This tells us that the heterogeneity of the pore vol-
ume is greater than that of the pore length. Thus, transport properties that are more 
dependent on the pore volume, instead of pore length, are envisaged to be more depend-
ent on the spatial location in The Geysers.

We present two fractal patterns for the pore space of The Geysers. We take the fractal 
dimensions to be equal to 3.42 and 2.32 for the circular and slit-like conduits, respec-
tively. These numbers are close to the average of the fractal dimensions listed. It is also 
easy to construct acyclic models (Bethe 1935; Sakhaee-Pour and Bryant 2015) for them. 
We start with a line of unit length (white line in Fig.  4), which is often referred to as 
the initiator (Feder 2013). We then generate four branches (green lines) whose lengths 

Table 2 Coefficients of non-linear regressions for the pore volume and pore length of each 
sample

Sample 1 2 3 4 5 6

R2(D′

l
) 0.98 0.87 0.93 0.94 0.97 0.86

R2(Dl‑circular) 0.99 0.99 0.98 0.98 0.97 0.98

R2(Dl‑slit) 0.99 0.96 0.96 0.96 0.97 0.98
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are two-third of the initiator for the circular conduits, and repeat this process two more 
times. The fractal dimension of the generated topology, as shown in Fig. 4a, is equal to 
3.42 (= log [4]

/

log [1.5]).
We also generate a fractal pattern for the slit-like geometry. We begin with a line of 

unit length similar to the circular throat geometry (white line in Fig. 4b). We then gen-
erate 5 branches whose lengths are half of the initiator, and repeat this process for two 
more times. This creates a fractal pattern whose dimension is equal to 2.32 (=  log[5]/
log[2]).

The characteristic size of the pores is on the order of few nanometers to micrometers 
in The Geysers samples (Fig. 2). High-resolution images are required to capture the void 
space of these samples, and such images are usually limited to an extremely small vol-
ume of the rock. The fractal patterns presented here, on the other hand, are based on the 
drainage experiments conducted on core plugs whose sizes are usually on the order of 
few centimeters. It is not yet possible to build a pore model based on the high-resolution 
images to capture the effective connectivity of the pore space at the large scale (~1 cm). 
Thus, it is not yet possible to test the developed model using high-resolution images.

Figure 4 shows the fractal patterns of the pore space of The Geysers. The presented 
patterns shed light on the pore length and the characteristic size of the representative 
pore models. The length of the line represents the pore length and its color denotes the 
characteristic size. The red color shows the smallest size, highest capillary pressure; the 
white color shows the largest size, lowest capillary pressure, which are included in the 
illustrations. The difference between the presented topologies indicates the difference 
between the total lengths of the pore models. We should emphasize that the pore models 

Fig. 4 Two fractal patterns for the pore space of The Geysers with a circular and b slit‑like throat geometries. 
The length and color of the line are representative of its length and characteristic size, respectively. The red 
color denotes the smallest size, highest capillary pressure, and the white color is relevant to the largest size, 
lowest capillary pressure. The fractal patterns are based on the acyclic model (Sakhaee‑Pour and Bryant 2015) 
with fractal dimensions equal to a 3.42 and b 2.36
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are not unique simply because fractals do not possess a unique representation for a given 
fractal dimension. The presented patterns aim to clarify the importance of considering 
different geometries for the cross-sectional area of the pore space.

Conclusions
Our main objective in this study was to analyze the fractality of pore space of The Gey-
sers. For this purpose, we considered circular and slit-like conduits to mimic aspect 
ratios close to unity and infinity, respectively. We realized that the fractal dimension of 
the pore space that controls the pore length is close to 3.4 if we use circular conduits to 
capture the void space. If we use slit-like conduits instead, the fractal dimension reduces 
to 2.3. Our analysis also shows that the fractal dimension of the geothermal reservoir 
depends on whether we analyze the pore volume or the pore length. We presented frac-
tal patterns for the pore length of The Geysers using the acyclic pore model. The pre-
sented models for the pore length can have major implications for understanding heat 
convection at pore-scale.
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