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Abstract

Background: We present three-dimensional simulation of cooling of 63 models of a
magma chamber in the Los Azufres geothermal field by varying the top of the
chamber depth between 5 and 9 km (centroid from about 7 to 13 km) and its
volume between 300 and 600 km3.

Methods: Nineteen new best-fit cubic equations are presented to represent the
temperature field in the geothermal reservoir in terms of the chamber centroid
depth, its volume, or both.

Results: These equations clearly show that the thermal regime is much more
sensitive to chamber depth than to its volume. These simulation results imply that,
for a better estimation of the energy budget of a volcanic area, the depth parameter
should be better constrained than the chamber volume.

Conclusion: Geoscientists are, therefore, encouraged to obtain more reliable
estimates of magma chamber depths for active volcanoes and potential geothermal
areas. Furthermore, the smallest discretization time and mesh size should be used for
solving the heat flow equations in three-dimensions.

Keywords: Thermal modeling; Subsurface temperatures; Geothermal system; Magma
chamber; Three-dimensional simulation
Background
Three-dimensional thermal modeling of a magma chamber has been already applied to

decipher thermal regime beneath the Los Humeros and La Primavera geothermal fields,

located in the eastern and western parts of the Mexican Volcanic Belt, respectively

(LHGF and LPGF, respectively, in Figure 1; Verma and Andaverde 2007; Verma et al.

2012; Verma and Gómez-Arias 2013a). Such a three-dimensional model has been also

put forth for cooling of two magma chambers in the Las Tres Vírgenes geothermal field,

Baja California Sur, Mexico (Guerrero-Martínez and Verma 2013).

The sensitivity of two magma chamber parameters - chamber depth and volume -

was also evaluated by Verma et al. (2011) at the top of the magma chamber as well as

at its sides, which indicated that the chamber depth is more sensitive than the chamber

volume. Similarly, the influence of discretization time and mesh size was estimated

from three-dimensional temperature field simulation in the LHGF and LPGF (Verma

and Gómez-Arias 2013b).
2013 Verma and Gomez-Arias; licensee Springer. This is an Open Access article distributed under the terms of the Creative
ommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
eproduction in any medium, provided the original work is properly cited.
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Figure 1 Location of the Los Azufres geothermal field (LAGF), Michoacán. The map was modified
after Verma et al. (2012). LAGF, in the central part of the Mexican Volcanic Belt (MVB), LHGF, Los Humeros
geothermal field, Puebla, eastern part of the MVB; LPGF, La Primavera geothermal field, Jalisco, western part
of the MVB; PV, Puerto Vallarta; G, Guadalajara; MC, Mexico City; V, Veracruz.
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For the Los Azufres geothermal field (LAGF in Figure 1) located in the central part

of the Mexican Volcanic Belt, only two-dimensional thermal modeling was carried out

long ago by Verma and Andaverde (1996). We present the first three-dimensional

simulation study of this field and document the temperature regime in the underlying

geothermal reservoir as a function of the chamber depth and volume. The reservoir

temperatures are inferred to be much more sensitive to chamber depth than to its vol-

ume. This is the first study that evaluates the sensitivity of these two parameters for a

geothermal reservoir. Six additional runs for the last thermal model are presented to

predict the thermal regime of this geothermal area and to understand the influence of

discretization time and mesh size.
Geological synthesis

The LAGF is located in the state of Michoacán, about 200 km NW of Mexico City, be-

tween approximately 100°38′ and 100°43′ W and 19°50′ and 19°45′ N, and covers an

area of about 72 km2 (Dobson and Mahood 1985). The geology and geochemistry of

the area were reported by Campos-Enríquez et al. (2005), Cathelineau et al. (1987),

Dobson and Mahood (1985), Pandarinath (2011), Pandarinath et al. (2008), Pradal and

Robin (1994), Verma (1985), Verma and Andaverde (1996), and Verma et al. (2005),

among others. The pre-volcanic basement consists of shales, sandstones, and conglom-

erates of Eocene to Oligocene age. The oldest volcanic rocks are andesites of Miocene

age (about 18 to 6 Ma) followed by the eruption of rhyolites at 1.6 to 0.84 Ma and an-

desites at about 0.86 Ma.

Voluminous eruption of dacites (about 19.3 km3) took place at about 0.36 to

0.33 Ma. This major event was simulated in our thermal modeling, which was carried

out for about 0.40 Ma to the present. This large eruption was followed by about

12.2 km3 of rhyolites during about 0.30 to 0.14 Ma and about 4.6 km3 of the youngest

basalt, considered to have erupted during 0.15 Ma to the present. From geochemical
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modeling, Verma (1985) suggested that the volume of the magma chamber beneath the

LAGF was at least about 400 km3.
Methods
Conceptual models and methods

A region of 30 km (x-axis, north–south direction) × 30 km (y-axis, east–west direction) ×

20 km (z-axis, vertical direction) was considered for 3-D simulator TCHEMSYS of Verma

and Andaverde (2007). For thermal sensitivity analysis, uniform mesh size of 0.25 km ×

0.25 km × 0.25 km was used, which resulted in 120 × 120 × 80 control volumes (a total of

1,152,000 volumes for solving heat-flow equations in three dimensions). Emplacement

and boundary conditions as well as simplified geology are summarized in Table 1.

To evaluate the sensitivity of chamber depth and volume, 63 different simulation

models were considered from nine chamber depths (top of the chamber at 5 to 9 km,

with increments of 0.5 km) and seven chamber volumes (300 to 600 km3, with incre-

ments of 50 km3). All 63 models from M1 to M63 are summarized in Table 2. For ex-

ample, the first nine models, M1, M2, M3, M4, M5, M6, M7, M8, and M9, correspond

to the top of the magma chamber at the subsurface depths of 5.0, 5.5, 6.0, 6.5, 7.0, 7.5,

8.0, 8.5, and 9.0 km, respectively, and the chamber volume of 300 km3 is for each of

them. Three of these models, M1, M5, and M9, are graphically presented in Figure 2.

Similarly, three of the final models, M55, M59, and M63, are shown in Figure 3.

Discretization time of 500 years and total simulation time of 100,000 years were used

for these 63 models. Cubic polynomial equations were fitted to the appropriate simu-

lated results.

Similarly, six runs were carried out for discretization time of 20, 10, and 1 year, mesh

size of 0.20 and 0.10 km, and total simulation time of 0.40 million years representing

the entire eruption history of the main volcanic events (Dobson and Mahood 1985;

Verma and Andaverde 1996). These runs were obtained for 5 km depth of the top of

magma chamber, 600 km3 of chamber volume, and three magma recharge events at

0.34 Ma (20 km3 of magma), 0.22 Ma (12 km3), and 0.026 Ma (5 km3). The magma

chamber depth and volume for these runs correspond to the model M55 (Figure 3).
Results and discussion
Evaluation of sensitivity of chamber depth and volume

Temperature versus depth (or control volume number) profiles for the 63 simulated

models were similar to the one presented in Figure 4 corresponding to model M55

(Table 2). The magma chamber is schematically shown by continued lines. The diagram

shows the temperature distribution along a vertical line (coordinates 80, 1 in the con-

trol volume space) of 20 km depth, at the center of the chamber (x = 60 and y = 60),

i.e., between the surface (x, y, z coordinates 60, 60, 80) and the deepest part of the sim-

ulated volume (60, 60, 1). Note the thermal anomaly due to the emplacement and

cooling of the magma chamber is still observed within the magma chamber, as well as

both above and below it (compare filled diamonds and open squares with the normal

geothermal gradient shown as a dotted line in Figure 4).

Figure 5 shows the results of simulated temperatures and temperature excess values

(the difference of simulated temperatures and the normal subsurface temperatures)



Table 1 Emplacement conditions of magma chamber and geological properties for
thermal models of the Los Azufres geothermal field (LAGF)

Physical property (units) Emplacement of magma chamber

Emplacement conditions

Depth of the top the chamber (d) (km) 5.0-9.0

Depth of the chamber centroid (dc) (km) 7.000 to 12.875

Volume (V) (km3) 300 to 600

Thickness of the magma chamber (E) (km) 4.00 to 7.75

Radius (r) (km) 5.0

Magma emplacement temperature (Tcham) (°C) 1,350

Boundary conditions

Surface temperature (Ts) (°C) 25

Geothermal gradient (ΔTg) (°C/km) 30

Geological strata (strata 1–4 rock type)a

Granite-granodiorite

Width (km) 16.00

Thermal conductivity (W/mK) 2.80

Specific heat (J/kg K) 1,073

Density (kg/m3) 2,680

Metamorphic rocks

Width (km) 1.00

Thermal conductivity (W/mK) 2.73

Specific heat (J/kg K) 1,050

Density (kg/m3) 2,280

Andesite

Width (km) 2.75

Thermal conductivity (W/mK) 1.72

Specific heat (J/kg K) 1,151

Density (kg/m3) 2,180

Rhyolite

Width (km) 0.25

Thermal conductivity (W/mK) 3.44

Specific heat (J/kg K) 1,074

Density (kg/m3) 2,460
aPhysical properties were taken from Contreras et al. (1988) and Verma and Andaverde (1996).
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along a vertical profile at the middle part of the simulated region for the same model as

in Figure 4 (M55; Table 2). From these estimates, vertical thermal gradient (δT) values

in the geothermal reservoir (subsurface depths of 1 to 2.5 km) were estimated for all 63

models.

Best-fit cubic equations for the thermal gradient as a function of the depth of the

chamber centroid (dc) parameter (Equations 1 to 7) are listed in Table 3. The results of

the models used for a given equation are also listed in the third column of Table 3. As

an example, Equation 1 was obtained from the simulated results of models M1 to M9

(Tables 2 and 3). Equation 1 shows the behavior of simulated thermal (note ‘thermal’

and not ‘geothermal’ is used, because we have subtracted the initial ‘normal’ geothermal

temperatures from the simulated temperatures) gradient in the geothermal reservoir



Table 2 Specifications of the 63 models of the Los Azufres geothermal field (LAGF)
simulated in the present work

Model Subsurface depth Chamber
volume V
(km3)

Thickness of
the magma

chamber E (km)
Top of the chamber d (km) Chamber centroid dc (km)

M1 5.0 7.000 300 4.00

M2 5.5 7.500 300 4.00

M3 6.0 8.000 300 4.00

M4 6.5 8.500 300 4.00

M5 7.0 9.000 300 4.00

M6 7.5 9.500 300 4.00

M7 8.0 10.000 300 4.00

M8 8.5 10.500 300 4.00

M9 9.0 11.000 300 4.00

M10 5.0 7.250 350 4.50

M11 5.5 7.750 350 4.50

M12 6.0 8.500 350 4.50

M13 6.5 8.750 350 4.50

M14 7.0 9.250 350 4.50

M15 7.5 9.750 350 4.50

M16 8.0 10.250 350 4.50

M17 8.5 10.75 350 4.50

M18 9.0 11.250 350 4.50

M19 5.0 7.500 400 5.00

M20 5.5 8.000 400 5.00

M21 6.0 8.500 400 5.00

M22 6.5 9.000 400 5.00

M23 7.0 9.500 400 5.00

M24 7.5 10.000 400 5.00

M25 8.0 10.500 400 5.00

M26 8.5 11.000 400 5.00

M27 9.0 11.500 400 5.00

M28 5.0 7.875 450 5.75

M29 5.5 8.375 450 5.75

M30 6.0 8.875 450 5.75

M31 6.5 9.375 450 5.75

M32 7.0 9.875 450 5.75

M33 7.5 10.375 450 5.75

M34 8.0 10.875 450 5.75

M35 8.5 11.375 450 5.75

M36 9.0 11.875 450 5.75

M37 5.0 8.250 500 6.50

M38 5.5 8.750 500 6.50

M39 6.0 9.250 500 6.50

M40 6.5 9.750 500 6.50

M41 7.0 10.250 500 6.50

M42 7.5 10.750 500 6.50
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Table 2 Specifications of the 63 models of the Los Azufres geothermal field (LAGF)
simulated in the present work (Continued)

M43 8.0 11.250 500 6.50

M44 8.5 11.750 500 6.50

M45 9.0 12.250 500 6.50

M46 5.0 8.500 550 7.00

M47 5.5 9.000 550 7.00

M48 6.0 9.500 550 7.00

M49 6.5 10.000 550 7.00

M50 7.0 10.500 550 7.00

M51 7.5 11.000 550 7.00

M52 8.0 11.500 550 7.00

M53 8.5 12.000 550 7.00

M54 9.0 12.500 550 7.00

M55 5.0 8.875 600 7.75

M56 5.5 9.375 600 7.75

M57 6.0 9.875 600 7.75

M58 6.5 10.375 600 7.75

M59 7.0 10.875 600 7.75

M60 7.5 11.375 600 7.75

M61 8.0 11.875 600 7.75

M62 8.5 12.375 600 7.75

M63 9.0 12.875 600 7.75
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obtained from centroid depths of about 7.0 to 11.0 km and a fixed chamber volume of

300 km3. The quality of the cubic fit can be judged from the value of R2 = 0.999000,

which is statistically significant (>99%). Note that the maximum value of R2 can be

1.00000. We note that for the linear correlation coefficient (r) to be statistically mean-

ingful (Verma et al. 2005), it should be reported as rounded to at least three (in fact,

four or more) decimal places, because the critical value tables for different significance

levels have values with up to three decimal places (Ebdon 1988; Bevington and

Robinson 2003). The R2, therefore, will have to be reported to at least five (in fact, more)

decimal places; otherwise, it may be indistinguishable from the maximum value of 1.

The values of the coefficients and the respective errors of the first term (without dc)

and the three other terms (dc, dc2, and dc3) in Equation 1 are included. The statistically

significant fit, quantitatively expressed in the R2 parameter, is also indicated by rela-

tively low errors of the coefficients in Equation 1. The values of the coefficients

(−498.9, 49.76, and −1.653, respectively, for cd, dc2, and dc3; respective errors of 32.6,

3.66, and 0.135, equivalent to about 6.5%, 7.3%, and 8.2%, respectively) indicate the sen-

sitivity of the dc variable. Similarly statistically valid results were obtained for the other

equations (Equations 2 to 7; see R2 values of 0.998990 to 0.998993). Note that had we

reported rounded R2 values to less number of decimal places, most of them will be in-

distinguishable from each other and from the maximum value of 1. The differences

among the errors of the coefficients in Equations 1 to 7 could not then be explained

from small differences in the R2 quality parameter (Table 3).
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Figure 2 Simplified geological models (M1, M5, and M9) of the Los Azufres geothermal field (LAGF),
Michoacán, Mexico. These models were input in the three-dimensional simulator TCHEMSYS. Numbers 1
to 4 are for geological strata (Table 1).
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Equations 8 to 16 corresponding to the chamber volume (V) parameter are presented

in Table 4. All equations represent statistically significant cubic fit, because R2 values

are relatively high (0.969720 to 0.991220; confidence levels of >99%). However, the

values of the coefficients, particularly, for the V, V2, and V3 terms are much smaller

than those for the respective dc terms (compare Equations 8 to 16 with 1 to 7). For ex-

ample, in Equation 8 that represents the behavior of δT as a function of V, the coeffi-

cients for V,V2, and V3 are, respectively, 5.80 × 10−3, 11.67 × 10−3, and 7.69 × 10−3, with

respective errors of 0.90 × 10−3, 2.05 × 10−3, and 1.52 × 10−3, equivalent to about 15.5%,
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Figure 3 Simplified geological models (M55, M59, and M63) of the Los Azufres geothermal field
(LAGF), Michoacán, Mexico. These models were input in the three-dimensional simulator TCHEMSYS.
Numbers 1 to 4 are for geological strata (Table 1).
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17.6%, and 19.7%, respectively. These mean values are much smaller than those for Equa-

tion 1, whereas the respective errors are much greater (15.5% to 19.7% for volume terms

as compared to 6.5% to 8.2% for centroid depth terms). The same is true for all other

equations of Tables 3 and 4. All these inferences are statistically valid as examined from

significance tests through UDASYS software (Verma et al. 2013), which uses highly

precise and accurate critical values (Cruz-Huicochea and Verma 2013; Verma and

Cruz-Huicochea 2013). The errors of the coefficients of dc terms in Equations 1 to 7 vary

from 6.5% to 8.2%, whereas those for the V terms in Equations 8 to 16 show the range of

15.5% to 27.8%. The intercept terms, on the other hand, show higher percent errors for dc

(5.7% to 6.1%) than for V equations (0.004% to 0.3%).

The coefficients of the linear dc term in Equations 1 to 7 range from about −500 to −700,
whereas those for the V term vary from about 7.0 × 10−3 to 5.8 × 10−3. Similar relationship

is valid for the quadratic and cubic terms (Tables 3 and 4). The relatively large values of the

coefficients for the dc as compared to the V parameter imply that for thermal gradient, the

magma chamber depth is much more sensitive than the chamber volume.

In order to confirm the importance of chamber depth as compared to its volume, we

used the results of all 63 simulations to obtain the final best-fit equations (Equations 17

to 19; Table 5). Although the R2 value for the cubic fit for the dc parameter is relatively

high (0.691799), the errors for all coefficients are much higher than the respective coef-

ficient values (Equation 17). Equation 18 representing the thermal gradient as a func-

tion of chamber volume seems to be statistically meaningless (note the almost

negligible value 0.000000 of R2 and extremely large errors for all coefficients).

Therefore, using all 63 simulations, we present our best-fit Equation 19 for the ther-

mal gradient as a function of both parameters (dc and V). The R2 value of 0.838748
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was obtained for this equation, which is not as high as for Equations 1 to 16. In Equa-

tion 19, the coefficients for the dc terms are consistently much higher than the respect-

ive coefficients for the V terms; for example, 169 for dc as compared to 0.069 for V,

equivalent to a factor of about 2,400. The coefficients of quadratic and cubic terms are

also higher for dc than for V (Table 5). The final combined equation, therefore, clearly

confirms that the chamber depth is more sensitive than the volume. From the energy

point of view, geoscientists (in particular geologists, volcanologists, and geophysicists)

are encouraged to better constrain the chamber depth than its volume. This recom-

mendation is valid not only for geothermal areas but also for active volcanoes. We also

note that although we have evaluated the thermal regime in terms of the centroid

depth, the inference will not change had we used the top of the chamber depth, instead

of the centroid depth.

Preliminary three-dimensional thermal runs for a model of the Los Azufres geothermal

field (LAGF)

The main aim of simulating these six additional runs for the model M55; Table 2) was

to assess the effects of discretization time and mesh size (Figure 6). Their influence was

evaluated at three different locations (L1, L2, and L3; Figure 4). For the largest

discretization time of 20 years, the geothermal reservoir showed simulated tempera-

tures of about 160°C for mesh size of 0.20 km and 175°C for mesh size of 0.10 km,

whereas for 1 year, these temperatures were about 155°C and 160°C, respectively. Even lar-

ger differences in simulated temperature were observed for the other two locations (see

L2 and L3 in Figure 6). Thus, both parameters - discretization time and mesh size - exert



Table 3 Cubic best-fit equations for the simulated thermal gradient in the geothermal reservoir as a function of the depth of the centroid of the magma
chamber

Equation
#

Depth of the top of magma
chamber d (km)

Centroid of the magma chamber
dc (km) [Model #]

Volume of the magma
chamber V (km3)

R2 Equationa

1 5.0 to 9.0 7.0 to 11.0 [M1 to M9] 300 0.999000 δT = (1668 ± 96) − (498.9 ± 32.6) dc + (49.76 ± 3.66) × dc2 − (1.653 ± 0.135) dc3

2 5.0 to 9.0 7.25 to 11.25 [M10 to M18] 350 0.998993 δT = (1798 ± 105) − (524.9 ± 34.6) dc + (51.08 ± 3.77) dc2 − (1.656 ± 0.136) dc3

3 5.0 to 9.0 7.5 to 11.5 [M19 to M27] 400 0.998991 δT = (1933 ± 114) − (551.1 ± 36.5) dc + (52.35 ± 3.88) dc2 − (1.657 ± 0.136) dc3

4 5.0 to 9.0 7.875 to 11.875 [M28 to M36] 450 0.998990 δT = (2148 ± 128) − (591.1 ± 39.5) dc + (54.22 ± 4.04) dc2 − (1.657 ± 0.136) dc3

5 5.0 to 9.0 8.25 to 12.75 [M37 to M45] 500 0.998990 δT = (2377 ± 143) − (632.5 ± 42.6) dc + (56.09 ± 4.19) dc2 − (1.657 ± 0.136) dc3

6 5.0 to 9.0 8.5 to 12.5 [M46 to M54] 550 0.998990 δT = (2539 ± 154) − (661 ± 45) dc + (57.33 ± 4.29) dc2 − (1.657 ± 0.136) dc3

7 5.0 to 9.0 8.875 to 12.875 [M55 to M63] 600 0.998990 δT = (2795 ± 172) − (705 ± 48) dc + (59.2 ± 4.4) dc2 − (1.657 ± 0.136) dc3

aThe coefficients and their errors in the equations are rounded values according to the flexible rules put forth by Verma (2005). For Model # see Table 2.
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Table 4 Cubic best-fit equations for the simulated thermal gradient in the geothermal reservoir as a function of the volume of the magma chamber

Equation # Depth of the top of
magma chamber

(d, km)

Centroid of the
magma chamber

(dc, km)

Volume of the magma
chamber (V, km3)

[Model #]

R2 Equationa

8 5.0 7.000 to 8.875 300 to 600 [M1, 10, 19, 28, 37,
46, 55]

0.991220 δT = (45.712 ± 0.129) + (5.80 × 10− 3 ± 0.90x10− 3) V − (11.67 × 10− 3 ± 2.05 × 10− 3) V2 + (7.69 ×
10− 3 ± 1.52 × 10− 3) V3

9 5.5 7.500 to 9.375 300 to 600 [M2, 11, 20, 29, 38,
47, 56]

0.988839 δT = (26.113 ± 0.044) + (1.87 × 10− 3 ± 3.12 × 10− 4) V − (37.6 × 10− 4 ± 7.1 × 10− 4) V2 + (24.9 ×
10− 4 ± 5.2 × 10− 4) V3

10 6.0 8.000 to 9.875 300 to 600 [M3, 12, 21, 30, 39,
48, 57]

0.986291 δT = (13.7530 ± 0.0139) + (55.2 × 10− 5 ± 9.8 × 10− 5) V − (11.14 × 10− 4 ± 2.23 × 10− 4) V2 + (7.42 ×
10− 4 ± 1.65 × 10− 4) V3

11 6.5 8.500 to 10.375 300 to 600 [M4, 13, 22, 31, 40,
49, 58]

0.983621 δT = (6.69010 ± 4.03 × 10− 3) + (15.04 × 10− 5 ± 2.83 × 10− 5) V − (30.5 × 10− 5 ± 6.4 × 10− 5) V2 +
(20.4 × 10− 5 ± 4.8 × 10− 5) V3

12 7.0 9.000 to 10.875 300 to 600 [M5, 14, 23, 32, 41,
50, 59]

0.980872 δT = (3.00922 ± 1.07 × 10− 3) + (37.8 × 10− 6 ± 7.5 × 10− 6) V − (7.70 × 10− 5 ± 1.70 × 10− 5) V2 +
(5.15 × 10− 5 ± 1.26 × 10− 5) V3

13 7.5 9.500 to 11.375 300 to 600 [M6, 15, 24, 33, 42,
51, 60]

0.978078 δT = (1.252520 ± 2.59x10− 4) + (8.80 × 10− 6 ± 1.82 × 10− 6) V − (17.96 × 10− 6 ± 4.13 × 10− 6) V2 +
(12.06 × 10− 6 ± 3.06 × 10− 6) V3

14 8.0 10.000 to 11.875 300 to 600 [M7, 16, 25, 34, 43,
52, 61]

0.975271 δT = (0.172276 ± 1.19 × 10− 5) + (37.8 × 10− 8 ± 8.4 × 10− 8) V − (7.75 × 10− 7 ± 1.91 × 10− 7) V2 +
(5.22 × 10− 7 ± 1.41 × 10− 7) V3

15 8.5 10.500 to 12.375 300 to 600 [M8, 17, 26, 35, 44,
53, 62]

0.972478 δT = (0.172276 ± 1.19 × 10− 5) + (37.8 × 10− 8 ± 8.4 × 10− 8) V − (7.75 × 10− 7 ± 1.91 × 10− 7) V2 +
(5.22 × 10− 7 ± 1.41 × 10− 7) V3

16 9.0 11.000 to 12.875 300 to 600 [M9, 18, 27, 36, 45,
54, 63]

0.969720 δT = (0.05697113 ± 2.28 × 10. − 6) + (69.8 × 10− 9 ± 1.6 × 10− 8) V − (14.37 × 10− 8 ± 3.64 × 10− 8) V2 +
(9.68 × 10− 8 ± 2.69 × 10− 8) V3

aThe coefficients and their errors in the equations are rounded values according to the flexible rules put forth by Verma (2005). For Model # see Table 2.
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Table 5 Cubic best-fit equations for thermal gradient in the geothermal reservoir as a function of either chamber depth or volume, or both, from all 63
simulated models

Equation # Depth of the top of magma
chamber (d, km)

Centroid of the magma
chamber (dc, km)

Volume of the magma
chamber (V, km3)

R2 Equationa

17 5.0 to 9.0 7.000 to 12.875 ————————— 0.691799 δT = (299 ± 289) − (50 ± 89) dc + (2.0 ± 9.1) dc2 − (0.009 ± 0.306) dc3

18 ————————— ————————— 300 to 600 0.000000 δT = (11 ± 239) + (1 ± 1680) V − (2 ± 3820) V2 + (1 ± 2820) V3

19 5.0 to 9.0 7.000 to 12.875 300 to 600 0.838748 δT ¼ 677� 238ð Þ− 169� 68ð Þ dcþ 13:9� 7:0ð Þ dc2− 0:392� 0:234ð Þ dc3

− 0:069� 0:69ð Þ V þ 0:37� 1:58ð Þ V2− 0:31� 1:17ð Þ V3

aThe coefficients and their errors in the equations are rounded values according to the flexible rules put forth by Verma (2005).

Verm
a
and

G
óm

ez-A
rias

G
eotherm

alEnergy
2013,1:5

Page
12

of
14

w
w
w
.geotherm

al-energy-journal.com
/content/1/1/5



Figure 6 Simulated temperatures at three locations (L1, L2, and L3). Temperatures are reported as a
function of discretization time and mesh size for the model M55 of the Los Azufres geothermal field (LAGF).
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significant influence in the estimated temperatures. These results are consistent with those

recently simulated by Verma and Gómez-Arias (2013b) for the LHGF and LPGF.

The simulated ‘present-day’ temperatures of about 160°C at the middle of the

geothermal reservoir (for δt = 1 year and mesh size = 0.10 km) are generally con-

sistent with the actually measured temperatures (generally 120°C to 250°C) in the

LAGF (Verma and Andaverde 1996). The simulated runs for the LAGF can be im-

proved in the future by incorporating all geological processes, such as magma evo-

lution (fractional crystallization, assimilation, and magma mixing), convection in

the magma chamber and geothermal reservoir, and heat generation from radio-

active elements. Similarly, the smallest possible discretization time and mesh size

will be used.

Conclusions
The first three-dimensional thermal simulation study carried out for the Los Azufres

geothermal field (LAGF) provided 19 best-fit cubic equations from 63 simulations to

understand the influence of the depth and volume of the underlying magma chamber.

The coefficients of the centroid depth terms were much higher than those of the vol-

ume terms, implying that the centroid depth is much more sensitive than the chamber

volume. The chamber depth should therefore be better constrained than the chamber

volume, not only in geothermal areas but also in active volcanoes. Preliminary thermal

modeling of the LAGF also shows that the present-day mean simulated temperatures

in the geothermal reservoir are around 160°C.
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