Skip to main content

Science – Society – Technology

Table 2 Applied parameters in the numerical model

From: Modeling neighborhood-scale shallow geothermal energy utilization: a case study in Berlin

Parameter

Symbol

Value

Unit

BHE type

−

2U

−

BHE length

L

99

\(\mathrm {m}\)

Borehole diameter

D

0.16

\(\mathrm {m}\)

Pipe distance

w

0.07

\(\mathrm {m}\)

Inlet pipe diameter

\(d_{\text {in}}\)

0.032

\(\mathrm {m}\)

Inlet pipe wall thickness

\(b_{\text {in}}\)

0.003

\(\mathrm {m}\)

Inlet pipe thermal conductivity

\(\lambda _{\text {in}}\)

0.42

\(\mathrm {Wm^{-1}K^{-1}}\)

Outlet pipe diameter

\(d_{\text {out}}\)

0.032

\(\mathrm {m}\)

Outlet pipe wall thickness

\(b_{\text {out}}\)

0.003

\(\mathrm {m}\)

Outlet pipe thermal conductivity

\(\lambda _{\text {out}}\)

0.42

\(\mathrm {Wm^{-1}K^{-1}}\)

Grout thermal conductivity

\(\lambda _{g}\)

2.0

\(\mathrm {Wm^{-1}K^{-1}}\)

Undisturbed subsurface temperature

\(\theta _{s}\)

11.6

\(^\circ \mathrm {C}\)

Subsurface thermal conductivity

\(\lambda _{s}\)

cf. Table 3

\(\mathrm {Wm^{-1}K^{-1}}\)

Subsurface mean thermal conductivity*

\(\lambda _{s, mean}\)

2.5

\(\mathrm {Wm^{-1}K^{-1}}\)

Subsurface volumetric heat capacity

\(\rho _{s} c_{s}\)

cf. Table 3

\(\mathrm {MJ m^{-3} K^{-1}}\)

Refrigerant volumetric heat capacity

\(\rho _{r}\)c\(_{r}\)

4.0

\(\mathrm {MJ m^{-3} K^{-1}}\)

Refrigerant density

\(\rho _{r}\)

1052

\(\mathrm {kg m^{-3}}\)

Refrigerant thermal conductivity

\(\lambda _{r}\)

0.48

\(\mathrm {Wm^{-1}K^{-1}}\)

Refrigerant dynamic viscosity

\(\mu _{r}\)

\(5.2\times 10^{-3}\)

\(\mathrm {kg m^{-1}s^{-1}}\)

Refrigerant flow rate per BHE

\(\dot{V}_r\)

\(4.63\times 10^{-4}\)

\(\mathrm {m^3s^{-1}}\)

Borehole thermal resistance*

\(R_b\)

0.09

\(\mathrm {K m W^{-1}}\)

  1. * Not used in the model, only for comparison purposes