Skip to main content

Science – Society – Technology

Table 1 Updated compilation of gas geothermometers reported in the literature for determining geothermal reservoir temperatures

From: GaS_GeoT: A computer program for an effective use of newly improved gas geothermometers in predicting reliable geothermal reservoir temperatures

No

Gas geothermometer

Acronym

Gas-Mineral equilibria reactions

Gas concentration units

Geothermal reservoir-typea

Calculation method

Temperature interval (°C)

References

1

CO2-H2S-CH4-H2

DP80

CaSO4 + FeS2 + 3H2O + CO2 ↔ CaCO3 + 1/3Fe3O4 + 3H2S + 7/3O2

C + CO2 + H2 ↔ 2CH4 + 2H2O

% volume

LIQDR and VAPDR

Analytical

145–300

D’Amore and Panichi (1980)

2

H2O-CO2-CH4-H2

G80a

CO2 + 4H2 ↔ CH4 + 2H2O

2NH3 ↔ N2 + 3H2

mmol/mol

LIQDR

Numericalb

100–340

Giggenbach (1980)

3

NH3-H2-N2

G80b

CO2 + 4H2 ↔ CH4 + 2H2O

2NH3 ↔ N2 + 3H2

mmol/mol

LIQDR

Numericalb

100–340

Giggenbach (1980)

4

CO2-CH4-H2

ND84a

CO2 + 4H2 ↔ CH4 + 2H2O

Mole fraction

LIQDR

Analytical

150–350

Nehring and D’Amore (1984)

5

CO2-H2

ND84b

H2 + 1/2O2 ↔ H2O

C + O2 ↔ CO2

Mole fraction

LIQDR

Analytical

150–350

Nehring and D’Amore (1984)

6

CO2-H2S

ND84c

3FeS2 + 2H2 + 4H2O ↔ Fe3O4 + 6H2S

C + O2 ↔ CO2

Mole fraction

LIQDR

Analytical

150–350

Nehring and D’Amore (1984)

7

CO2

AG85a

2clinozoisite + 2calcite + 3quartz + 2H2O ↔ 3prehnite + 2CO2

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

8

CO2-H2

AG85b

2clinozoisite + 2calcite + 3quartz + 2H2O ↔ 3prehnite + 2CO2

4pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 2pyrite + 3H2

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

9

CO2-H2

AG85c

2clinozoisite + 2calcite + 3quartz + 2H2O ↔ 3prehnite + 2CO2

4pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 2pyrite + 3H2

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

10

H2

AG85d

4pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 2pyrite + 3H2

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

11

H2

AG85e

4pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 2pyrite + 3H2

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

12

H2S

AG85f

pyrite + pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 3H2S

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

13

H2S

AG85g

pyrite + pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 3H2S

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

14

H2S-H2

AG85h

pyrite + pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 3H2S

4pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 2pyrite + 3H2

mmol/kg

LIQDR and VAPDR

Analytical

200–300

Arnórsson and Gunnlaugsson (1985)

15

CO2-CH4-CO

B85

CO2 + H2 ↔ CO + H2O

CH4 + 3CO2 ↔ 4CO + 2H2O

Mole fraction

LIQDR and VAPDR

Numericalb

n.r

Bertrami et al. (1985)

16

CO2-N2

A87a

n.a

mmol/kg

LIQDR

Analytical

200–300

Arnórsson (1987)

17

CO2-N2

A87b

n.a

mmol/kg

LIQDR

Analytical

200–300

Arnórsson (1987)

18

CO2-H2S-CH4-H2-CO

SD89

CO2 + 4H2 ↔ CH4 + 2H2O

H2 + 1/2O2 ↔ H2O

H2 + 1/2S2 ↔ H2S

H2 + CO2 ↔ CO + H2O

1/3Fe3O4 + S2 ↔ FeS2 + 2/3O2

% mol

VAPDR

Numericalb

140–370

Saracco and D’Amore (1989)

19

CO2-CH4

G91a

3CO2 + CH4 ↔ 4CO + 2H2O

mmol/mol

LIQDR

Analytical

100–350

Giggenbach (1991)

20

H2-Ar

G91b

2Fe3O4 + H2O ↔ 3Fe2O3 + H2 + O2

mmol/mol

LIQDR

Analyticalb

100–350

Giggenbach (1991)

21

CO2-Ar

G91c

n.a

mmol/mol

LIQDR

Analyticalb

100–350

Giggenbach (1991)

22

H2-Ar

GG92a

FeS2 + FeO + 2H2O ↔ Fe2O3 + 2H2S

mmol/mol

LIQDR

Analyticalb

100–350

Giggenbach and Glover (1992)

23

CO2-CO

GG92b

FeS2 + FeO + 2H2O ↔ Fe2O3 + 2H2S

mmol/mol

LIQDR

Analyticalb

100–350

Giggenbach and Glover (1992)

24

CO2-H2

K95a

Empirical geothermometer. Regression approach

% volume

LIQDR

Analytical

n.r

Koga et al. (1995)

25

CH4-H2

K95b

Empirical geothermometer. Regression approach

% volume

LIQDR

Analytical

n.r

Koga et al. (1995)

26

CO2-H2S

S96a

Empirical geothermometer. Multidimensional approach

% volume

LIQDR

Analytical

n.r

Supranto et al. (1996)

27

CO2-H2S-CH4

S96b

Empirical geothermometer. Multidimensional approach

% volume

LIQDR

Analytical

n.r

Supranto et al. (1996)

28

CO2

A98a

2clinozoisite + 2calcite + 3quartz + 2H2O ↔ 3prehnite + 2CO2

mmol/kg

LIQDR

Analytical

 > 230

Arnórsson et al. (1998)

29

CO2

A98b

2clinozoisite + 2calcite + 3quartz + 2H2O ↔ 3prehnite + 2CO2

mmol/kg

LIQDR

Analytical

 > 230

Arnórsson et al. (1998)

30

H2S

A98c

pyrite + pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 3H2S

mmol/kg

LIQDR

Analytical

 > 150

Arnórsson et al. (1998)

31

H2

A98d

4pyrrhotite + 2prehnite + 2H2O ↔ 2epidote + 2pyrite + 3H2

mmol/kg

LIQDR

Analytical

 > 150

Arnórsson et al. (1998)

32

CO2-N2

A98e

n.r

mmol/kg

LIQDR

Analytical

n.r

Arnórsson et al. (1998)

33

H2S-Ar

A98f

n.r

mmol/kg

LIQDR

Analyticalb

n.r

Arnórsson et al. (1998)

34

H2-Ar

A98g

n.r

mmol/kg

LIQDR

Analyticalb

n.r

Arnórsson et al. (1998)

35

H2S

B06

2Fe3O4 + 12H2S + CO2 ↔ 6FeS2 + 10H2O + CH4

% mol

LIQDR

Analytical

200–300

Blamey (2006)

36

CO2-H2-Ar

PC10a

2Fe3O4 + H2O ↔ 3Fe2O3 + H2 + O2

2H2O + C ↔ 2H2 + CO2

% mol

LIQDR and VAPDR

Gridb

100–350

Powell and Cumming (2010)

37

CO2-CO-CH4

PC10b

CacO3 + K-mica ↔ CaAl2-silciate + K-feldspar + CO2

CO2 + H2O ↔ CO + H2O

3CO2 + CH4 ↔ 4CO + 2H2O

% mol

Liquid—and VAPDR

Gridb

100–350

Powell and Cumming (2010)

38

CO2-CH4-H2-H2S

PC10c

CO2 + 4H2 ↔ CH4 + 2H2O

3FeS2 + 2H2 + 4H2O ↔ Fe3O4 + 6H2S

FeS2 + H2 ↔ FeS + H2S

% mol

LIQDR and VAPDR

Gridb

100–350

Powell and Cumming (2010)

39

CO2-CH4-H2

PC10d

CO2 + 4H2 ↔ CH4 + 2H2O

CaCO3 + K-mica ↔ CaAl2-silicate + K-feldspar + CO2

% mol

LIQDR and VAPDR

Gridb

100–350

Powell and Cumming (2010)

40

CO2-CH4-H2-H2S

PC10e

CO2 + 4H2 ↔ CH4 + 2H2O

3FeS2 + 2H2 + 4H2O ↔ Fe3O4 + 6H2S

FeS2 + H2 ↔ FeS + H2S

% mol

LIQDR and VAPDR

Gridb

200–350

Powell and Cumming (2010)

41

CO2-H2S-H2

B16a

CO2 + 4H2 ↔ CH4 + 2H2O

H2 + 2H2O + 3/2FeS2 ↔ 3H2S + 1/2Fe3O4

% volume

LIQDR

Numericalb

125–350

Barragán et al. (2016)

42

CO2-H2S-H2

B16b

CO2 + 4H2 ↔ CH4 + 2H2O

5/4H2 + 3/4Fe2O3 + 3/2FeS2 + 7/4H2O ↔ 3H2S + Fe3O4

% volume

LIQDR

Numericalb

150–350

Barragán et al. (2016)

43

CO2-H2S-H2

B16c

CO2 + 4H2 ↔ CH4 + 2H2O

H2 + FeS2 ↔ H2S + FeS

% volume

LIQDR

Numericalb

100–350

Barragán et al. (2016)

  1. aType of geothermal reservoir used to calibrate the gas geothermometers
  2. bGas geothermometers that were not considered in this work
  3. n.r. = not reported; n.a. = not available. Analytical method refers to a gas geothermometer that provides a direct mathematical function for the calculation of the reservoir temperatures, i.e., BHT = f(gas concentration); whereas Numerical method refers to a more complex function that correlate multiple variables (i.e., gas concentration, pressure, the fraction of water, temperature, among others); Grid geothermometric method refers to a gas geothermometer that provides a complex grid-numerical algorithm for the estimation of temperatures and other key parameters of the reservoir (i.e., steam fraction, distribution coefficients, and the steam/gas ratio)