Skip to main content

Science – Society – Technology

Geothermal Energy Cover Image

Table 3 Description of the modeled plant components

From: Making use of geothermal brine in Indonesia: binary demonstration power plant Lahendong/Pangolombian

Component Description
Evaporator Assumed design data*: di = 12 mm, t = 2 mm, λW = 50 W/(m K), ntubes = 344, npass = 2, sL = 1.45 do, sT = 1.45 do, sB = Di,Sh, staggered arrangement, AHX = 202 m2
Assumed fouling: RfH = 0.2 10−3 m2 K/W, RfC = 0.2 10−3 m2 K/W
Preheating: heat transfer tube side = 1-phase turbulent pipe flowa, heat transfer & pressure drop shell side = 1-phase flow shell-and-tube with bafflesb
Evaporation: heat transfer tube side = 1-phase turbulent pipe flowa, heat transfer shell side = pool boilingc, pressure drop shell side = 0.01 bar;
Superheating: heat transfer tube side = 1-phase turbulent pipe flowa, heat transfer shell-side = 1-phase flow across tube bundled; flow correction factori
Recuperator Assumed design data*: di = 24.4 mm, t = 2 mm, λW = 50 W/(m K), ntubes = 26, npass = 4, sF = 3.18 mm, δF = 0.4 mm, hF = 8.3 mm, λF = 500 W/(m K), inline arrangement, AHX = 478 m2
Assumed fouling: RfH = 0.18 10−3 m2 K/W, RfC = 0.1 10−3 m2 K/W
Heat transfer: heat transfer & pressure drop tube side = 1-phase turbulent pipe flowa,f, heat transfer & pressure drop shell side = 1-phase flow across finned-tube bundlese,g, flow correction factor for crossflowi
Condenser Assumed design data*: di = 14.8 mm, t = 1.6 mm, λW = 50 W/(m K), ntubes = 672, AHX = 551 m2
Assumed fouling: RfC = 0.17 10−3 m2 K/W
Heat transfer: heat transfer tube side = 1-phase turbulent pipe flowa, heat transfer shell side = condensation on horizontal tube bundleh, pressure drop shell side = 0.01 bar; flow correction factori
Dry cooler Assumed design data*: di = 11 mm, t = 1.6 mm, λW = 50 W/(m K), npass = 1, nrows = 5, sL = 2.3 do, sT = 2.0 do, sF = 2.65 mm, δF = 0.25 mm, hF = 8.3 mm, λF = 140 W/(m K), staggered arrangement, AV/AC = 0.25, AC = 120 m2; ηel,V = 0.75
Heat transfer: heat transfer tube side = 1-phase turbulent pipe flowa, heat transfer air side = 1-phase flow across finned-tube bundlee,g
Turbogenerator Model: Nozzle stage = Laval-nozzle with constant minimum cross-section,
turbine wheel = variable isentropic efficiency
Assumed design data*: ηis,T = 0.75, ηel,TG = 0.85; Anoz = 2260 mm2
Operational data: variable ηis,T based plant data evaluation (see Fig. 14),
Working fluid pump Pressures and volume flow rate from process calculation; ηel, P = 0.8, ηis,P = 0.75
Hot water and cooling water pump Power consumption characteristic based on real data as a function of volumetric flow rate
  1. * Design data and assumed data based on the manufacturer’s documentation
  2. aNusselt-correlation acc. to Gnielinski, VDI Gesellschaft (2010), section G1
  3. bDesign calculation acc. to Gaddis and Gnielinski, VDI Gesellschaft (2010), section G8
  4. cHeat flux calculation acc. to Gorenflo and Kenning, VDI Gesellschaft (2010), section H2
  5. dNusselt-correlation acc. to Gnielinski, VDI Gesellschaft (2010), section G7
  6. eNusselt-correlation acc. to Schmidt, VDI Gesellschaft (2010), section M1
  7. fDrag coefficient-correlation acc. to Blasius, VDI Gesellschaft (2010), section L1.1
  8. gDrag coefficient-correlation acc. to Gaddis, VDI Gesellschaft (2006), section L1.4
  9. hNusselt-correlation acc. to Nusselt, VDI Gesellschaft (2010), section J1
  10. iFlow correction factor acc. to Spang and Roetzel, VDI Gesellschaft (2010), section C1, Table 1