Skip to main content

Science – Society – Technology

Table 3 Input parameters for simulation

From: A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis

Description

Parameter

Value

Domain

Thickness of the model (pseudo-3D)

10 m

Reservoir depth

\(-2000\,\text {m}\)

Pressure initial

20 MPa

Flow rate—per 10 m thickness

0.1 m3 s−1

Temperature initial

300 °C

Temperature at injection

50 °C

Vertical stress, \(S_{\text{v}}\)

50 MPa

Maximum horizontal stress, \(S_{\text{Hmax}}\)

40 MPa

Minimum horizontal stress, \(S_{\text{hmin}}\)

30 MPa

Material

Matrix permeability

\(1 \times 10^{-17}\text {m}^{2}\)

Matrix porosity

0.1

Matrix density

2700 kg m−3

Fracture porosity

0.5

Fracture density

Matrix density

Fracture heat capacity

\(828\,\text {J}\,\text {kg}^{-1}\text {K}^{-1}\)

Fracture heat conductivity

\(3\,\text {W}\,\text {m}^{-1}\text {K}^{-1}\)

Matrix heat capacity

\(828\,\text {J}\,\text {kg}^{-1}\,\text {K}^{-1}\)

Matrix heat conductivity

\(3\,\text {W}\,\text {m}^{-1}\,\text {K}^{-1}\)

Poisson ratio, \(\text{nu}_{\text{limestone}}\)

0.26

Poisson ratio, \(\text{nu}_{\text{marble}}\)

0.27

Poisson ratio, \(\text{nu}_{\text{skarn}}\)

0.13

Young’s modulus, \(E_{\text{limestone}}\)

\(38 \times 10^{9}\,\text {GPa}\)

Young’s modulus, \(E_{\text{marble}}\)

\(49 \times 10^{9}\,\text {GPa}\)

Young’s modulus, \(E_{\text{skarn}}\)

\(49 \times 10^{9}\,\text {GPa}\)

Bulk Modulus matrix

\(E_{\text{matrix}}\times (3(1-2nu))\)

Fluid

Fluid compressibility

\(2 \times 10^{9}\,\text {Pa}\)

Density of fluid

1000 kg m−3

Dynamic viscosity of water @ 20 °C

\(1.00 \times 10^{-3}\,\text {Pa}\,\text {s}^{-1}\)

Dynamic Viscosity of Water @ 300 °C

\(8.58 \times 10^{-5}\,\text {Pa}\,\text {s}^{-1}\)