Skip to main content

Science – Society – Technology

Table 3 Input parameters for simulation

From: A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis

Description Parameter Value
Domain Thickness of the model (pseudo-3D) 10 m
Reservoir depth \(-2000\,\text {m}\)
Pressure initial 20 MPa
Flow rate—per 10 m thickness 0.1 m3 s−1
Temperature initial 300 °C
Temperature at injection 50 °C
Vertical stress, \(S_{\text{v}}\) 50 MPa
Maximum horizontal stress, \(S_{\text{Hmax}}\) 40 MPa
Minimum horizontal stress, \(S_{\text{hmin}}\) 30 MPa
Material Matrix permeability \(1 \times 10^{-17}\text {m}^{2}\)
Matrix porosity 0.1
Matrix density 2700 kg m−3
Fracture porosity 0.5
Fracture density Matrix density
Fracture heat capacity \(828\,\text {J}\,\text {kg}^{-1}\text {K}^{-1}\)
Fracture heat conductivity \(3\,\text {W}\,\text {m}^{-1}\text {K}^{-1}\)
Matrix heat capacity \(828\,\text {J}\,\text {kg}^{-1}\,\text {K}^{-1}\)
Matrix heat conductivity \(3\,\text {W}\,\text {m}^{-1}\,\text {K}^{-1}\)
Poisson ratio, \(\text{nu}_{\text{limestone}}\) 0.26
Poisson ratio, \(\text{nu}_{\text{marble}}\) 0.27
Poisson ratio, \(\text{nu}_{\text{skarn}}\) 0.13
Young’s modulus, \(E_{\text{limestone}}\) \(38 \times 10^{9}\,\text {GPa}\)
Young’s modulus, \(E_{\text{marble}}\) \(49 \times 10^{9}\,\text {GPa}\)
Young’s modulus, \(E_{\text{skarn}}\) \(49 \times 10^{9}\,\text {GPa}\)
Bulk Modulus matrix \(E_{\text{matrix}}\times (3(1-2nu))\)
Fluid Fluid compressibility \(2 \times 10^{9}\,\text {Pa}\)
Density of fluid 1000 kg m−3
Dynamic viscosity of water @ 20 °C \(1.00 \times 10^{-3}\,\text {Pa}\,\text {s}^{-1}\)
Dynamic Viscosity of Water @ 300 °C \(8.58 \times 10^{-5}\,\text {Pa}\,\text {s}^{-1}\)