Skip to main content

Science – Society – Technology

Table 3 Input parameters for the estimation of the heat supply rate

From: Meeting the demand: geothermal heat supply rates for an urban quarter in Germany

Parameter

Symbol

Value

Hydrogeology

 Darcy velocitya

\(v_{\text{fUA}}\)

3.5 × 10−6 m/s

\(v_{\text{fLA}}\)

3.3 × 10−7 m/s

\(v_{{\text{fUA}}+{\text{LA}}}\)

1.76 × 10−6 m/s

 Groundwater velocitya

\(v_{\text{aUA}}\)

1.17 × 10−5 m/s

\(v_{\text{aLA}}\)

1.65 × 10−6 m/s

\(v_{{\text{aUA}}+{\text{LA}}}\)

8.78 × 10−6 m/s

 Porosityb

\(p_{\text{UA}}\)

0.2

\(p_{\text{LA}}\)

0.1

\(p_{{\text{UA}}+{\text{LA}}}\)

0.14

 Hydraulic conductivityc

\(K_{\text{UA}}\)

3.5 × 10−3 m/s

\(K_{\text{LA}}\)

3.3 × 10−4 m/s

\(K_{{\text{UA}}+{\text{LA}}}\)

1.66 × 10−3 m/s

 Hydraulic gradientd

i

0.001

 Aquifer thicknesse

\(m_{\text{UA}}\)

13 m

\(m_{\text{LA}}\)

18 m

\(m_{{\text{UA}}+{\text{LA}}}\)

31 m

 Longitudinal thermal dispersivityf

\( a_{\text{L}}\)

3.4 m

 Transversal thermal dispersivityg

\(a_{\text{T}}\)

0.34 m

 Retardation factorh

R

2

 Volumetric heat capacity of wateri

\(c_{\text{pw}}\)

4.16 × 106 J/m3K

Geothermal system

 Relative annual operation period (heating + DHW)j

\(t_{\text{h}}\)

1700 h

 Heat extraction rate hGSHPk

\(q_{\text{hGSHP}}\)

33 W/m2

 BHE length

\(l_{\text{vGSHP}}\) m

17 m

\(l_{\text{vGSHP}} \) l

100 m

 Heat extraction rate vGSHP

\(q_{\text{vGSHP}}\) j

60 W/m

\(q_{\text{vGSHP}}\) i

100 W/m

 Hours per year

\( t_{\text{y}}\)

8760 h

 Temperature differenceg

\(\Delta \)T

6 K

 Time after reinjectiong

t

1000 d

 Coefficient of performanceg,n

COP

4

Rintheimer Feldj

 Number of refurbished buildings

 

31

 Area RF

\(A_{\text{RF}}\)

0.13 km2

 Average space heating demand: before refurbishment

\(h_{\text{b}}\)

136 kWh/m2

 Average space heating demand: after refurbishment

\(h_{\text{a}}\)

50 kWh/m2

 Total thermal energy demand: before refurbishment

\(H_{\text{b}}\)

10.12 GWh

 Total thermal energy demand: after refurbishment

\(H_{\text{a}}\)

4.79 GWh

  1. UA Upper Aquifer, LA Lower Aquifer
  2. aCalculated based on Hölting and Coldewey (2013)
  3. bBusch et al. (1974)
  4. cWirsing and Luz (2007)
  5. dTiefbauamt, City of Karlsruhe
  6. eLGRB (2005)
  7. fBeims (1983)
  8. gBaden-Württemberg (2009a)
  9. hMolina-Giraldo (2011)
  10. iVDI 4640, part 2 (2001)
  11. jJank and Kuklinski (2015)
  12. kRamming (2007)
  13. lBBergG (1980)
  14. mLGRB (2017)
  15. nMiglani et al. (2018)