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Abstract

Background: Aeromagnetic data of the Ikogosi warm spring region was used to
calculate the basal depth of the magnetic layer (Curie point depth) in the region. The
warm spring issues from a crossing of fractures from a metasedimentary suite of Effon
Psammite formation which form part of the Precambrian basement complex in Nigeria.

Method: The adopted computational method transforms the spatial data into the
frequency domain and provides a relationship between radially average power spectrum
of the magnetic anomalies and the depths to the respective sources. Heat flow density
and equivalent depth extent of heat production from radioactive isotopes in the area
were also evaluated.

Results: The average Curie point depth for the Ikogosi warm spring area is 15.1 ± 0.6 km
and centres on the host quartzite rock unit. The computed equivalent depth extent of
heat production provides a depth value (14.5 km) which falls within the Curie point
depth margin and could indicate change in mineralogy. The low Curie point depth
observed at the warm spring source is attributed to magmatic intrusions at depth. This is
also evident from the visible older granite intrusion at Ikere - Ado-Ekiti area, with shallow
Curie depths (12.37 ± 0.73 km).

Conclusions: Results indicate that the area is promising for further geothermal
explorations.

Keywords: Ikogosi; CPD; Geothermal; Aeromagnetic
Background
The Ikogosi Warm Spring is located in the southwestern part of Ekiti State of Nigeria. It

is situated between lofty steep-sided and heavily wooded, north-south trending hills about

17 miles (approximately 27.4 km) east of Ilesha, and about 6.5 miles (approximately

10.4 km) southeast of Effon Alaye (Rogers et al. 1969). It lies on the geographic latitude

of 7°35′N and longitude 5°00′E (Figure 1) within the central region of the area covered

by this study. Located within the Precambrian basement complex of southwestern

Nigeria, it is at an altitude of 450 to 500 m (Adegbuyi and Abimbola 1997).

The area covered by this study lies approximately between geographic latitudes

7°00′N and 8°00′N and geographic longitude 4°30′E and 5°30′E within the Precambrian of

southwestern Nigeria. The area is covered by the aeromagnetic map sheet 243 (Ilesha), 244
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Figure 1 Location of Ikogosi Warm Spring in the basement complex of Nigeria (after Adegbuyi and
Abimbola 1997). The dominant geology of Nigeria made mainly by crystalline (Precambrian basement
complex) and sedimentary rocks (Cretaceous recent sediments) are also represented. The map also shows
the locations of seismicity (modified from Eze et al. 2011). The Ibadan and Ijebu Ode locations of seismicity
appear closest to the study area.
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(Ado-Ekiti), 263 (Ondo) and 264 (Akure) spanning an area of approximately 12,400 km2.

Adegbuyi and Abimbola (1997) performed an extensive research on the energy resource po-

tential of the Ikogosi Warm Spring area using the technique of Instrumental Neutron Ac-

tivation Analysis (INAA). They investigated the radiochemical contents of uranium (U),

thorium (Th) and potassium (K) in a surface rock collection from the area and predicted

the source of the warm spring’s heat to be radioactive probably acquired by meteoric

water at depth from thorium-bearing zones of the quartzite host rock of the spring. Sam-

ples of the warm spring water and host quartzite rock collected from Ikogosi area were

analysed for the fluid physio-chemical characteristics and rock radioactivity in a bid to pre-

dict the source of water and the associated heat content (Rogers et al. 1969; Loehnert 1985;

Adegbuyi et al. 1996). The results were almost similar with predictions made about radio-

activity and high geothermal gradient responsible for the heat of the Ikogosi Warm Spring.

Joshua and Alabi (2012) investigated the pattern of radiogenic heat production in rock sam-

ples of southwestern Nigeria while Oladipo et al. (2005) carried out hydrochemical analysis

on water samples from the Ikogosi Warm Spring in southwestern Nigeria. Earlier studies of

the warm spring have been restricted to geological and geochemical investigations (Rogers

et al. 1969; Loehnert 1985, Adegbuyi et al. 1996; Ajayi et al. 1996). Ojo et al. (2011) carried
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out an investigation of the geological structure beneath the Ikogosi Warm Spring in south-

western Nigeria using integrated surface geophysical methods. They integrated vertical elec-

trical sounding (VES) and magnetic methods in the immediate vicinity of the Ikogosi

Warm Spring with a view to delineate its subsurface geological sequence and evaluate the

structural setting beneath the warm spring. They used inverse magnetic models and geoe-

lectrical sections to delineate fractured quartzite/faulted areas within fresh massive quartzite

at varying depths. It was deduced that the fractured/faulted quartzite may have acted as

conduit for the movement of warm groundwater from profound depths to the surface while

the spring outlet was located on a geological interface (lineament).

The present study attempts to determine the depths to the top and bottom of the

magnetized crust and to characterize the heat flow within the Ikogosi Warm Spring

area using Curie point depth (CPD) estimates from spectral analysis of aeromagnetic

data. Results will be invaluable to electricity generation companies in Nigeria, especially

now that alternative sources of power generation in Nigeria are being explored. The

CPD is known as the depth at which the dominant magnetic mineral in the crust

passes from a ferromagnetic state to a paramagnetic state under the effect of increasing

temperature (Nagata 1961). For this purpose, the basal depth (depth to the bottom) of a

magnetic source from aeromagnetic data is considered to be the CPD (Dolmaz et al. 2005).

Geological setting

About two thirds of Nigeria’s landmass is underlain by the Precambrian basement complex

(Figure 1). The crystalline rocks in Nigeria are made up of the Precambrian basement

complex and the Phanerozoic rocks. These crystalline basement rocks have been

subjected to deformation of different intensities throughout the geological period.

Consequently, NS, NE-SW, NW-SE, NNE-SSW, NNW-SSE and to a less extent, E-W

fractures have developed (Olujide and Udoh 1989; Eze et al. 2011). The Precambrian

basement rocks consist of the migmatite-gneissic-quartzite complex dated Archean to

early Proterozoic (2,700 to 2,000 Ma). Other units include the NE-SW trending schist

belts mostly developed in the western half of the country and the granitoid plutons of the

Older Granite suite dated Late Proterozoic to early Phanerozoic (750 to 450 Ma). The

main lithologies of the southwestern (SW) Nigeria basement complex includes the

amphibolites, migmatite gneisses, granites and pegmatites. Others are the schist made up

of biotite, quartzite, talk-tremolite and the muscovite. Crystalline rocks intruded into

these schistose rocks (Oyinloye 2011). The basement complex is in places intruded and

interspersed also by the older granites which originated in the Pan-African orogeny. Base-

ment complex rocks in Nigeria have been subjected to deformation of different intensities

throughout the geological period. Consequently, fractures have developed.

The warm spring issues with a temperature of 38°C near the foot of the eastern slope

of the north-south trending ridge from a thin quartzite unit within a belt of quartzite

which includes quartz-mica schist and granulitic migmatite east of Ilesha (Figure 2).

The Okemesi quartzite member is characterized by a North-South trending ridge called

the Effon ridge (Elueze 1988; Oyinloye 1992). The quartzitic rocks are composed of

dominant quartz with muscovite, chlorite and sericite occurring in minor proportions

(Adegbuyi and Abimbola 1997). Rogers et al. (1969) suggested that the source of springs in

the Effon Psammite formation is associated with a faulted and fractured quartzite band

sandwiched between schists. Chemical data show that quartzite is largely metamorphosed



Figure 2 Geological map of the study area. The Effon Psammite formation associated with the faulted
and fractured quartzite band sandwiched between schists (Effon Alaiye location) can be seen on the map.
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sandstones containing minor arkosic intercalations (Olade and Elueze 1979; Elueze 1988).

On the basis of petrology, a medium pressure Barrovian and low medium pressure types of

metamorphism had been suggested for the Precambrian basement rocks in southwestern

Nigeria (Oyinloye 2011). Chuku-Ike and Norman (1977) and Mbonu (1990) believe

that the intersections of the NNE-SSW epeirogenic belts with the NW-SE fracture

trends in Nigeria coincide with the centres of warm springs like the Wikki (Bauchi State)

and Ikogosi (Ekiti State) springs. The issue of the springs is controlled by permeability

developed within the quartzite as a result of intergranular pore spaces coupled with

fracturing of the relatively competent quartzite (Rogers et al. 1969).

Nigeria is not situated on any known seismic belt, yet between 1933 and 2000,

Nigeria experienced fifteen seismic events, three of which occurred in 1 year (Figure 1).

The intensities of these events ranged from III to VI based on the modified Mercalli
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Intensity Scale. Three of the events, the 1984 seismicity at Ijebu Ode, the 1990 at

Ibadan and 2000 at Jushi-Kwari were instrumentally recorded. They had body wave

magnitudes ranging from 4.3 to 4.5, local magnitudes between 3.7 and 4.2, and surface

wave magnitudes of 3.7 to 3.9 (Ajakaiye et al. 1987; Akpan and Yakubu 2010;

Eze et al. 2011). Two of them (Ibadan and Ijebu Ode measurements) are located

close to our study area (the Ikogosi Warm Spring area). Some of the important fault

systems in Nigeria are the Ifewara, Zungeru, Anka and Kalangai fault systems. They

are interpreted to have resulted from transcurrent movements (Garba 2003; Eze

et al. 2011). Of these, only the Ifewara fault is located in the region of this study. Adepe-

lumia et al. (2008) confirmed the existence of Ifewara shear zone formed by sharing activ-

ities during Late Precambrian times using multi-spectral scanner (MSS) and side-looking

airborne radar (SLAR) images. They identified a NNE-SSW trending Ifewara fault system

in the area and showed that the 250 km-long NE-SW trending Ifewara fault zone could

be linked with Atlantic fracture system. Burke et al. (1977) and Hubbard (1975) believed

that the pronounced age difference on both sides of the fault zone suggests that the zone

may indeed be a suture of Kibaran age. Burke (1969) suggested possible relationship be-

tween the epicentres of some of the West African earthquakes and continentward exten-

sions of oceanic fractures into the landmass. Stresses built up around plate boundaries

could travel toward the centre of the plate triggering intraplate seismicity especially in pre-

existing faults. The coastal area of Nigeria lies in close proximity to the boundary between

the African plate and South American plate. Some of the seismic activities that occurred in

the coastal areas of Nigeria have been possibly initiated by this process (Eze et al. 2011).

Methods
Regional magnetic feature and geology

A high-resolution aeromagnetic survey over the Ikogosi Warm Spring and its surround-

ings was conducted between 2004 and 2008 and published by the Geological Survey of

Nigeria (GSN) on a map scale of 1:100,000 series. The various map sheets obtained were

processed and merged together to a common dataset. They were transformed to a total

field anomaly dataset and gridded at 0.5 km. The analysis of magnetic field used reduced

to the pole data (RTP). The RTP correction applied assumed a declination of −3° and an

inclination of −10° for this region utilizing the method of Silva (1986). Figure 3 shows the

geomagnetic anomaly field map of the study area. The map had the regional geomagnetic

field and the effects of diurnal magnetic variations removed.

The magnetic map and geologic map shows a good correlation between exposed

geologic units and magnetic signatures. The strong variations in magnetic intensity

suggest a wide variety of different magnetic properties. Notable (positive) anomalies

are observed at the Oshogbo, Okemesi and Ilesha locations (Figure 3) reaching

values of 60 to 112 nT. This tends to correspond with the exposed undifferentiated

metasediments noted in these locations (Figure 2). Positive anomalies of 50 to 70 nT

are also observed at the Ijero-Ekiti location whose probable source could be traced

to the undifferentiated metasediments in this region. Within the towns of Ado-Ekiti

and Ikere, positive magnetic anomalies of 80 to 110 nT were obtained. We traced

this observation to the Older Granites domiciled in this region. In other regions of

the map encompassing the towns of Erinmo, Ifewara, Oriade, Ikogosi and Okeigbo,

negative magnetic anomalies ranging from −30 to −156 nT have been noted. The belt of



Figure 3 Geomagnetic anomaly field map of the study area. The data was reduced to the pole
assuming a declination of −3° and an inclination of −10° for this region. Notable (positive) anomalies are
observed at the Oshogbo, Okemesi and Ilesha locations reaching values of 60 to 112 nT. Positive anomalies
of 50 to 70 nT are also observed at the Ijero-Ekiti and within the towns of Ado-Ekiti. Negative magnetic
anomalies ranging from −30 to −156 nT have been noted in the towns of Erinmo, Ifewara, Oriade, Ikogosi
and Okeigbo.
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quartzite, quartz-mica schist and granulitic migmatite encapsulated by the quartzite belt in

the region is identified with this observation. This quartzite is part of the Okemesi quartzite

member of the Effon Psammite formation (east of Ilesha) belonging to the Ife-Ilesha schist

belt of the Precambrian basement complex of Nigeria (Loehnert 1985; Adegbuyi et al.

1996). The Ikogosi town (study location) has magnetic lows of −0.46 to −35 nT, extending

westwards. This location is also part of the fractured quartzite unit in the formation.

One of the methods of examining thermal structure of the crust is the estimation of

the CPD, using aeromagnetic data (Dolmaz et al. 2005). Various studies have shown

correlations between Curie temperature depths and average crustal temperatures, lead-

ing to viable conclusions regarding lithospheric thermal conditions in a number of

regions around the world (Ross et al. 2006). The mathematical model on which our

analysis is based is a collection of random samples from a uniform distribution of

rectangular prisms, each prism having a constant magnetization. Two fundamental
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methods serve as a basis of all subsequent analysis, first provided by Spector and Grant

(1970), estimating the average depths to the top of the magnetized bodies from the

slope of the log power spectrum and second by Bhattacharyya and Leu (1975) for

obtaining the depth to the centroid of the causative body. The method can provide

valuable information about the regional temperature distribution at depths not easily

examined using other methods (Okubo et al. 1985). The Curie temperature isotherm

corresponds to the temperature at which magnetic minerals lose their ferromagnetism

(approximately 580°C for magnetite at atmospheric pressure). Magnetic minerals warmer

than their Curie temperature are paramagnetic and from the perspective of the earth’s sur-

face are essentially nonmagnetic (Ross et al. 2006). Thus the Curie temperature isotherm

corresponds to the basal surface of magnetic crust and can be calculated from the lowest

wavenumbers of magnetic anomalies, after removing the approximate regional field from

the aeromagnetic data (e.g. Bhattacharyya and Morley 1965; Spector and Grant 1970;

Mishra and Naidu 1974; Byerly and Stolt 1977; Connard et al. 1983; Hamdy et al.

1984; Blakely 1988; Tanaka et al. 1999; Salem et al. 2000; Ross et al. 2006).

We applied the methods of Spector and Grant (1970), Okubo et al. (1985) and

Trifonova et al. (2006), which examined the spectral knowledge included in subregions of

magnetic data for our analysis.

Spectral analysis

The earliest papers on Curie point depth determination based on spectral analysis of

geomagnetic data are those of Byerly and Stolt (1977) where analyses for different areas of

USA have been published. More recently, investigations have been made for parts of the

territory of Japan (by Okubo 1985, 1989, 1994), USA (by Mayhew 1985; Blakely 1988),

Greece (Tsokas et al. 1998; Stampolidis and Tsokas 2002), Portugal (Okubo et al. 2003),

Bulgaria (Trifonova et al. 2006, 2009) and Turkey (Dolmaz et al. 2005; Maden 2009).

Authors consider the power spectrum of the total geomagnetic field intensity anomaly over

a single rectangular block using the expression, which was first given by Bhattacharyya

(1965). The equation was transformed into polar wavenumber coordinates (S,ψ), and the

average depths to the top of magnetized bodies from the slope of the log power spectrum

were calculated. The model has proven successful in estimating average depths to the tops

of magnetized bodies (Trifonova et al. 2006).

One principal result of Spector and Grant’s analysis is that the expectation value of the

spectrum for the model is the same as that of a single body with the average parameters

for the collection (Okubo et al. 1985).

In polar coordinates (S,ψ) in frequency space, this spectrum has the form

F S;ψð Þ ¼ 2πJA N þ i L cosψþM sinψð Þ½ � � nþ i l cosψþm sinψð Þ½ �
� sinc πsacosψð Þ sinc πsbsinψð Þ
� exp −2πis xo cosψþ yo sinψð Þð Þ
� exp −2πsztð Þ− exp −2πszbð Þ½ � ð1Þ

where J =magnetization per unit volume; A = average cross-sectional areas of the bodies;

L, M, N = direction cosines of the geomagnetic field; l, m, n = direction cosines of the
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average magnetization vector; a and b = average body x- and y-directions, xo and yo =

average body x- and y-centre locations and zt and zb = average depths to the top and bot-

tom of the bodies, and where

sinc xð Þ ¼ sinx
x

Following Bhattacharyya and Leu (1975, 1977), estimation of the bottom depths could
be approached in two steps: first, find the centroid depth zo and second, determine

the depth to the top zt. The depth to the bottom (inferred CPD) is calculated from

these values:

zb ¼ 2zo−zt ð2Þ
The terms involving zt and zb can be recast into a hyperbolic sine function of zt and
zb plus a centroid term. At very long wavelengths, the hyperbolic sine tends to unity,

leaving a single term containing zo, the centroid. At somewhat shorter wavelengths, the

signal from the top dominates the spectrum and an estimate of the depth to the top

can be obtained (Okubo et al. 1985). If we begin with the centroid, at very long wave-

lengths (compared to the body dimensions), the terms involving the body parameters

(a, b, and zb-zt) may be approximated by their leading terms, to yield

F S;ψð Þ ¼ 4πVJs N þ i L cosψþM sinψð Þ½ � � nþ i l cosψþm sinψð Þ½ �
� exp −2πis xo cosψþ yo sinψð Þð Þ
� exp −2πszoð Þ; ð3Þ

where V is the average body volume.

Equation 3 can be recognized as the spectrum of a dipole.

In effect, the ensemble average at these very low frequencies is that of a random

distribution of point dipoles. What follows, therefore, is independent of the details of

the body parameters (prisms, cylinders or whatever), provided that the dimensions in all

directions are comparable. The method of Okubo et al. (1985) was used in estimating zo
from Equation 3:

If G S;ψð Þ ¼ 1
s F S;ψð Þ

First, average the square amplitude of G over an angle in the frequency plane

H2 sð Þ ¼ 1
2π

Zπ
−π

G S;ψð Þj j2dψ ð4Þ

Then H(s) has the form

H sð Þ ¼ A exp −2πszoð Þ
if F satisfies Equation 3, where A is a constant. Hence,

lnH sð Þ ¼ lnA−2πszo ð5Þ
holds. The centroid depth zo can now be estimated by least-squares fitting ln H(s) with

a constant and a term linear in s.
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The second step is the process of estimating the depth to the top. For this purpose,

we return to Equation (1) and assume that a range of wavelengths can be found for

which the following approximations hold:

sinc ππacosψð Þ≈1;
sinc ππasinψð Þ≈1;

and

exp −2 πsazbð Þ ≈ 0:

For these approximations to make sense, the bodies must in general be large in depth

compared to their horizontal dimensions. However, if the distribution of horizontal

body dimension is very broad, a similar effect will be produced by variability in terms

corresponding to the horizontal body dimensions.

If the above approximation holds, the spectrum reduces to the form

F S;ψð Þ ¼ 2πJA N þ i L cosψþM sinψð Þ½ � � nþ i l cosψþm sinψð Þ½ �
� exp −2πis xo cosψþ yo sinψð Þð Þ
� exp −2πsztð Þ ð6Þ

which is very similar to Equation 3, except for a factor of s. Equation 6 is in fact the

spectrum of a monopole.

Estimation of zt is therefore done using

K2 sð Þ ¼ 1
2π

Zπ
−π

F S;ψð Þj j2dψ ð7Þ

from which

k sð Þ ¼ B exp −2πsztð Þ

follows, where B is a sum of constants independent of s,

then from

lnK sð Þ ¼ lnB−2πszt ð8Þ

and fit ln K (s) with a constant and a term linear in s.

The reliability of this method has been proven in many cases (e.g. Okubo 1994;

Tsokas et al. 1998; Trifonova et al. 2006). Fast Fourier transform (FFT) estimates

Fourier components between zero frequency and the Nyquist limit imposed by the

grid cell size. The Nyquist frequency is the highest frequency (short wavelength) that

is possible to measure given a fixed sample interval (Yawsangratt 2002). It is defined

by the expression (Clement 1972; Billing and Rechards 2000),

N ¼ 1
2Δxð Þ ð9Þ

where Δx is the sampling interval.

The sampling interval used during the analysis of data in this work, 500 m (0.50 km),

directly imposes a Nyquist frequency of 1 km on the data.
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Conductive heat flow

The basic relation for conductive heat transport is Fourier’s law (Tanaka et al. 1999).

In one-dimensional case under the assumptions that the direction of the temperature

variation is vertical and the temperature gradient dT
dz= is constant, Fourier’s law

takes the form

q ¼ k
dT
dz

ð10Þ

where q is the heat flux and k is the coefficient of thermal conductivity.

According to Tanaka et al. (1999), the Curie temperature (θ) can be obtained from

the Curie point depth zb and the thermal gradient dT
dz= using the following equation:

θ ¼ dT
dz

� �
zb ð11Þ

In this equation, it is assumed that the dT
dz= is constant.
From Equations 10 and 11,

zb ¼ k
θ

q
ð12Þ

Tanaka et al. (1999) showed that any given depth to a thermal isotherm is inversely
proportional to heat flow, where q is the heat flow. This equation implies that regions

of high heat flow are associated with shallower isotherms, whereas regions of lower

heat flow are associated with deeper isotherms (Ross et al. 2006). An average surface

heat flow value was computed using Equations 10 and 11 and was based on possible

Curie point temperature of 580°C using a thermal conductivity of 2.5 Wm−1°C−1, given

by Stacey (1977) as the average for igneous rocks.

Radiogenic heat generation

The presence of thorium-rich accessory minerals, such as monazite, zircon and rutile

is usually linked to micaceous zones in radio-active porphyritic and coarse granite

(Ragland and Roger 1961; Gerard and Kappelymeyer 1987). Such granitic rock bodies

are found to be suitable nuclear resources including the uraniferous sandstone and

marginal marine sediments. Using the scanning electron microscope to determine

the spot chemical composition and empirical formulae of nearly all rock-forming

minerals in the rocks of the basement complex of southwestern Nigeria, Oyinloye

(2011) discovered the mineral, monazite. He concluded that this mineral was present

as a notable accessory mineral in all the crystalline rocks of the basement complex in

Ilesha area even in the amphibolites which is supposed to be igneous. Monazite is a

phosphate of the rare earth elements, especially the light ones. The petrogenetic im-

plication of the presence of monazite in the crystalline rocks of southwestern Nigeria

is that the initial magma from which the precursor rocks were formed contains some

input from the crustal or sedimentary source. There is therefore the possibility of a

uranium/thorium bearing unit at a vertical depth in the micaceous-quartzite rock

unit of the Ikogosi Warm Spring area (Adegbuyi and Abimbola 1997). The majority

of the continental heat flow originates from the decay of radioactive isotopes in the
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crust, thus finding areas with high isotope concentration can be equal to finding

areas with high heat flow (Holmberg et al. 2012).

Radiogenic heat production (RHP), H (μW/m3) is related to the decay of primarily,

the radioactive isotopes 232Th, 238U and 40K and can be estimated based on the concen-

tration (C) of the respective elements (Rybach 1988; Holmberg et al. 2012) through

Equation 13:

H ¼ ρ 9:52CU þ 2:56CTh þ 3:48CKð Þ10−5 ð13Þ

where ρ is the density of the rock and its concentrations in uranium (Cu), thorium

(CTh) are given in weight/parts per million and weight percent for potassium (CK).

Heat flow depends critically on radioactive heat production in the crust. The two

primary effects are thus that continental heat flow is proportional to the surface

crustal radioactivity in a given region and decreases with time since last major tec-

tonic event (Stein 1995). Heat flow must be a continuous function inside the earth;

in particular, it will be the same on both sides of the boundary separating the crust

from the mantle (Masters and Constable 2013). A plot of heat flow and heat produc-

tion rate from radioactivity of rocks revealed a linear distribution which can be fitted

with a linear equation of the form:

qs ¼ qm þ qr ð14Þ

where qs is the surface heat flow and qm is the mantle heat flow (heat flow into the base

of the crust). The total contribution of heat production in the crust to the surface heat

flow qr is therefore,

qr ¼ ρH szr ð15Þ

where ρ is density of the crust, Hs is the heat production measured in rocks collected

at the surface, zr could be interpreted as the ‘equivalent depth extent of heat produc-

tion’, that is, the extent to which the heat production measured at the surface (Hs) extends

to depth if we consider distribution models for radioactivity in the crust and extent of heat

production (Stuwe 2008). Masters and Constable (2013) had assumed that zr is much less

than the thickness of the continental crust. Clearly, in nature, radioactivity is not constant

in the crust down to zr and zero below that, but this model gives us a fair indication of

the proportion of surface heat flow that is due to radioactivity (Stuwe 2008).

Results
Map division into overlapping subregions

In the estimation of depths to the Curie temperature in Oregon, for example, Connard

et al. (1983) divided a magnetic survey into overlapping cells (77 × 77 km) and calcu-

lated for each cell a radially average power spectrum. However, the spectrum of the

map only contains depth information to a depth of length (L)/2π (Shuey et al. 1977). If

the source bodies have bases deeper than L/2π, the spectral peak occurs at frequency

lower than the fundamental frequency for the map and cannot be resolved by spectral

analysis (Salem et al. 2000).

Our method has evolved from published methods. Rather than dividing the aero-

magnetic data into overlapping subregions of equal dimension on a uniform grid, we
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selected subregions of dimension 55 × 55 km across the entire magnetic map and

additional random blocks at prominent magnetic anomaly regions. We ensured at

least 50% overlap of the blocks and our choice of 55 × 55 km dimension was

adopted from the size of each of the four map sheets incorporated for the total field

intensity map. The number of overlapping blocks of 22 was discretionary, guided by

the concentration of prominent magnetic anomalies on the map. The coordinates at

the centre of each block, representing the sampled point, were noted for the CPD

location. We adopted the current method to enable sampling of more data points.

Given the location of the Ikogosi Warm Spring (7°35′N, 5°00′E) at the centre of the

aeromagnetic map investigated, our method enabled adequate probing of the warm

spring area. Figure 4 shows the sampled points for the CPD analysis realized from

our method.

For simplification of the approach used in our CPD analysis (Bhatacharyya and

Leu 1975, 1977; Okubo et al. 1985), we resolve these steps to Equation 16 for
Figure 4 Geomagnetic anomaly field map of the study area. The black circular dots represent the
sampled points obtained from the 22 overlapping blocks of size, 55 × 55 km.
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deriving the depth to the centroid (zo) and Equation 17 for estimation of the depth

to the top boundary (zt) of that distribution:

ln
P sð Þ1=2

sj j

" #
¼ lnA−2π sj jzo ð16Þ

ln P sð Þ1=2
h i

¼ lnB−2π sj jzt ð17Þ

where P(s) is the radially averaged power spectrum of the anomaly, |s| is the wavenumber,

A is a constant and B is a sum of constants independent of |s|. Then the basal depth (zb)

of the magnetic source is calculated from Equation 2. The obtained basal depth of a mag-

netic source is assumed to be the CPD. FFT was used to convert the space domain grid

data to the Fourier domain. The radially average log power spectrum of each block was

computed using MAGMAP filtering program (GEOSOFT MAGMAP 2007). The radially

averaged energy represents the spectral density (energy) averaged for all grid elements at

the wavenumber. Figure 5 shows the example of the radially averaged power spectrum

plot for block 5 of the 22 blocks. From the centroid depth of 7.60 ± 0.06 km and depth

to the top of 0.78 ± 0.02 km, CPD is calculated as 14.42 ± 0.53 km with percentage un-

certainty at 3.7 for this block. The 22 estimated CPD values of the study area range

from 11.5 to 21.9 km. Table 1 and Figure 6 shows the CPD values and CPD map of the

study area, respectively.

Considering Equation 14 and supposing we take a uniform distribution of heat-

producing elements and use a value for H typical of granite (H = 9.6 × 10− 10Wkg− 1)

(Fowler 2005; Masters and Constable 2013), the contribution to qs from heat-producing

elements in the crust is qm = ρHz = 91 mWm− 2, using ρ = 2, 700 kg m− 3 and z = 35 km

(assumed depth of crust):

qm ¼ −q 35ð Þ ¼ −91 mWm−2 ð18Þ

The negative sign indicates that z is pointing in the opposite direction of q (Masters
and Constable 2013). From Equations 14 and 15, we have

qs−qm
ρH s

¼ zr ð19Þ

In the terrestrial continental crust, the average heat flow is between 65 mW/m2 and
48 mW/m2. For our calculations, we assumed a surface heat flow value of 65 mW/m2

for continental lithosphere (Pollack et al. 1993). We adopted the concentrations of U,

Th and K in surface rocks collected from the Ikogosi Warm Spring region, given in average

concentration values of 6.68 ppm U, 27.19 ppm Th and 5.77% K for both quartzite and

schistose rock types (Adegbuyi and Abimbola 1997). Equation 13 was applied in Equation 19

with the average density of quartzite taken as 2650 kgm− 3 (Marciniszyn et al. 2013).

Discussion
According to Ross et al. (2006), in places where heat flow information is inadequate, the

depth to the Curie temperature isotherm may provide a proxy for temperature-at-depth.

The map in Figure 6 shows the CPD for the Ikogosi Warm Spring area, determined by

applying a minimum curvature algorithm to the CPD values in Table 1. To quantify the

error in the estimated CPD, we evaluated the standard and statistical errors of the power



a

b

Figure 5 Example of radially average power spectrum for estimation of the CPD using the
two-dimensional magnetic anomaly data of Block 5. Depths of 7.60 and 0.78 km are obtained as the
centroid and top bound using the gradient of spectra defined as ln (P1/2/|s|) and ln (P1/2), where |s| is the
wavenumber and P(s) is the radially average power spectrum.
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density spectrum from the linear fit using the definition of the error adopted from

Trifonova et al. (2009) and Okubo and Matsunaga (1994). The results of the spectral

analysis of aeromagnetic anomalies over the Ikogosi Warm Spring area show Curie

point depth minimum estimates range between 11.5 ± 1.6 and maximum estimates

21.9 ± 1.7 km (Table 1) with an average value of 15.1 ± 0.6 km. Studies have shown

that the Curie point depth is linked to the geological context. Tanaka et al. (1999)

pointed out that the Curie point depths are shallower than about 10 km at volcanic

and geothermal areas, 15 to 25 km at island arcs and ridges, deeper than 20 km at

plateaus and deeper than 30 km at trenches. The warm spring presence in the study

area qualifies the area for the second description. Loehnert (1985) and Adegbuyi

et al. (1996) had submitted that the warm spring issues with temperature range of

37°C to 38.5°C near the foot of the eastern slope of a north-south trending ridge

from a thin quartzite unit within a belt of quartzite.

In particular, depths to the base of magnetic crust determined from subregions centred

over the Ikogosi Warm Spring area are generally shallower than those determined for

areas farther from the warm spring source. Shallow CPD values are also noted farther



Table 1 Results of spectral analysis and depth estimations of magnetic sources including
error estimation of the study area

Block Location zt (km) Error zt
(±km)

zo (km) Error zo
(±km)

CPD
(km)

Error CPD
(±km)Longitude X Latitude Y

1 4°46ʹ 7°48ʹ 0.852 0.014 11.382 0.360 21.91 1.74

2 5°10ʹ 7°48ʹ 0.945 0.005 7.174 0.018 13.40 0.14

3 5°70ʹ 7°48ʹ 0.878 0.004 7.170 0.044 13.46 0.22

4 5°12ʹ 7°38ʹ 0.727 0.024 6.540 0.037 12.35 0.55

5 5°16ʹ 7°43ʹ 0.780 0.016 7.600 0.064 14.42 0.53

6 5°17ʹ 7°30ʹ 0.645 0.013 6.510 0.129 12.37 0.73

7 5°50ʹ 7°24ʹ 0.646 0.006 7.793 0.017 14.94 0.21

8 5°17ʹ 7°16ʹ 0.666 0.006 6.074 0.403 11.48 1.63

9 5°90ʹ 7°16ʹ 0.626 0.006 8.654 0.223 16.68 1.01

10 4°46ʹ 7°16ʹ 0.713 0.016 10.409 0.244 20.11 1.38

11 4°46ʹ 7°24ʹ 0.766 0.009 7.002 0.377 13.24 1.57

12 4°46ʹ 7°36ʹ 0.807 0.007 10.484 0.310 20.16 1.36

13 4°58ʹ 7°46ʹ 0.791 0.005 9.308 0.308 17.83 1.28

14 5°60ʹ 7°40ʹ 1.025 0.059 8.176 0.228 15.33 1.74

15 4°59ʹ 7°20ʹ 0.735 0.029 9.670 0.271 18.61 1.78

16 5°50ʹ 7°37ʹ 0.901 0.006 7.212 0.035 13.52 0.22

17 4°60ʹ 7°35ʹ 0.812 0.036 6.292 0.038 11.77 0.66

18 5°17ʹ 7°48ʹ 0.827 0.022 7.265 0.050 13.70 0.56

19 5°12ʹ 7°48ʹ 0.827 0.056 7.342 0.035 13.86 1.06

20 4°58ʹ 7°22ʹ 0.646 0.010 7.825 0.019 15.01 0.30

21 4°46ʹ 7°33ʹ 0.922 0.036 7.636 0.115 14.35 1.00

22 5°11ʹ 7°48ʹ 1.000 0.046 7.446 0.031 13.89 0.76
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from the spring source and within the Ikere, Ado-Ekiti and east of Akure. These regions

do not fall within the highly fractured quartzite belt stretching in the NNE-SSW direction

(Figure 2), considered an aquifer system with relatively high storage capacity (Loehnert

1985); hence, the lack of physical heat signatures as compared with the Ikogosi Warm

Spring area where the aquifer system along with faults and shallow CPDs results in the

warm spring. In addition to this observation, the shallow Curie depth observed could be a

result of the intruded Older Granite unit spotted in that region. This peculiar observation

led us to assert that the low CPD at the spring source location could also be due to mag-

matic intrusion at depth in the highly fractured quartzite unit. Olujide and Udoh (1989)

had asserted that the basement complex of Nigeria is in places intruded and interspersed

by older granites which originated in the Pan-African orogeny. Generally, at depths of 100

to 200 m, normal increase in temperature with depth (geothermal gradient of 35°C km−1

for crystalline non-seismic terrains of the world) cannot sufficiently explain the rather

small temperature difference (about 12°C) between the adjacent warm and cold springs of

the Ikogosi area (Adegbuyi and Abimbola 1997). The sharp increase of CPD away from

the warm spring source location (Figure 6) provides a fair satisfactory explanation. We

conclude that the source of the warm spring sits on a very shallow CPD in sharp contrast

to the cold spring (a tributary of the Owena River, Rogers et al. 1969) source which

confluences with the warm spring.



Figure 6 Curie point depth map of the study area. Depths were obtained by two-dimensional spectral
analysis of the geomagnetic data using 22, 50% overlapping square blocks 55 km in size.
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Curie temperature depends on magnetic mineralogy (Tanaka et al. 1999). We agree with

the conclusions of Schlinger (1985) and Frost and Shive (1986) that magnetite is the dom-

inant magnetic mineral contributing to the long wavelength magnetic anomalies in the

continental crust; hence, 580°C is a reasonable Curie temperature for deep crustal rocks

(Ross et al. 2006). We have been constrained by lack of data on temperature measure-

ments at depth in the region of study and indeed the entire crystalline basement complex

of Nigeria. The closest temperature gradient measurement was done by Verheijen and

Ajakaiye (1979). This was conducted in available boreholes located in the centre of the

Nigerian Ririwai complex (being one of the granitic ring structures of younger granites

province of northern Nigeria, located within the Precambrian shield) which gave a heat

flow of 0.92 ± 0.04 hfu (38.5 ± 1.7 mW/m2). The result is of the same order of magni-

tude as what should be expected in the surrounding Precambrian basement complex

at about 0.9 ± 1.2 hfu (37.6 ± 50.2 mW/m2) if the worldwide averages given by Lee and

Uyeda (1965) and Kappelmeyer and Haenl (1974) are assumed to be correct (Verheijen

and Ajakaiye 1979). Obviously, no far-reaching conclusions can be drawn from a few

measurements, and there is need to have measurements made in a series of boreholes
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located at adequate intervals within the basement complex. On the basis of insufficient

temperature measurements in depth, we calculated the average heat flow from our

study assuming a constant Curie temperature of 580°C and compare with the mea-

sured heat flow value from Verheijen and Ajakaiye (1979) and the worldwide averages

for Precambrian basement complex. While our average heat flow of 91.2 ± 2.1 mW/m2

shows significant departure from Verheijen and Ajakaiye (1979) value for the northern

Nigeria crystalline complex, it however tends to agree with the worldwide averages’

value for Precambrian basement complex. The average heat flow in thermally ‘normal’

continental region is about 65 mW/m2 (Pollack et al. 1993). Values in excess of about

80 to 100 mW/m2 indicate anomalous geothermal condition in the subsurface

(Sharma 2004). The presence of the Ikogosi Warm Spring in the region of study and

the estimated average heat flow value obtained under our assumptions indicates

anomalous geothermal condition in the subsurface.

The combined determinations of heat flow density and of radioactive heat production

rate yield basic information about the temperature field and the structure of the earth’s

crust and are indispensable to understand the interrelations between heat flow density

and geology (Abbady et al. 2004). Due to the absence of deep boreholes data for heat

flow measurements within the study area, surface measurements have been used as the

information source. Our calculations of RHP in the study area shows an average value

of 4.06 μWm− 2. This value appears to be relatively higher when compared to the aver-

age heat production of the Precambrian shield, 0.77 ± 0.08 μWm− 3 given by Jaupart

and Mareschal (2003), although they also stress that on a local scale, the variation from

their value could be significant. We attribute the significant increase in our radiogenic

heat flow value to the high radioelement contents (Adegbuyi and Abimbola 1997) ob-

tained for the dominant quartzite rocks in the region. Regardless how the heat flux data

are selected, there is absolutely no correlation between heat flux and crustal thickness.

If the heat flux and the total crustal heat production do not increase with crustal thick-

ness, the concentration in heat-producing elements must decrease as the thickness of

the crust increases (Mareschal and Jaupart 2013). Recall that radioactivity is not con-

stant in the crust down to the equivalent depth extent of heat production and zero

below that (Stuwe 2008). We calculate our equivalent depth extent of heat production

(Equation 19) to obtain a value of 14.5 km and compare with the average CPD value of

15.1 ± 0.6 km obtained for the region. We observed that our equivalent depth extent of

heat production lies within the CPD margin. Pollack and Chapman (1977) showed that

RHP contributes about 45% of the surface heat flow observed over the continents,

while Lachenbruch (1970), Swanberg (1972) and Lowrie (1997) showed that its magni-

tude exponentially decreases with depth. This decay indicates that RHP comes from a

superficial layer of the crust, 4 to 16 km (Okeyode 2012). Therefore, our calculated

CPD could as well be a representation of the depth of total decrease of heat-producing

elements or change in mineralogy in the crust.

The sources of seismicity in Nigeria include inhomogeneities and zones of weakness

in the crust created by the various episodes of magmatic intrusions and other tectonic

activities (Eze et al. 2011). The possible mechanism for Nigeria’s seismicity have

been attributed to the locations of earth movements associated with NE-SW trending

fracture and zones of weakness extending from the Atlantic Ocean into the country

(Ajakaiye et al. 1986, Ajakaiye et al. 1987, Eze et al. 2011). We observe a concentration
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of seismic activity points close to the study region in the Ijebu ode and Ibadan locations

(Figure 1). Adepelumia et al. (2008) identified a NNE-SSW trending Ifewara fault system

(Figure 2) in the area and showed that the 250-km-long NE-SW trending Ifewara fault

zone could be linked with Atlantic fracture system. Considering that in volcanically active

regions around the world earthquake swarms associated with contemporaneous

crustal deformation are often inferred to be the result of subsurface magma move-

ments (Wright et al. 1976), we propose that the seismic activities could be as a result

of movement of, or within, magmatic intrusions in this zone which could also contribute

to the low CPD obtained at the Ikogosi Warm Spring region. A thick magnetic crust sug-

gests stable continental regions while thin magnetic crust accounts for tectonically active

regions also associated with higher heat flow (Rajaram et al. 2009).
Conclusions
We have applied spectral analysis to aeromagnetic anomalies in order to estimate the

basal depth herein assumed Curie point depth, beneath the Ikogosi Warm Spring re-

gion - Ekiti State, Nigeria. We found out that the region is characterized by shallow

Curie depths and high heat flow. The Ikogosi Warm Spring area is underlined by an

average Curie point depth of 15.1 ± 0.6 km. This shallow CPD implies a heat flow of

91.2 ± 2.1 mW/m2. We were however constrained by the lack of additional information

about temperature measurements at depth so we compare our calculated heat flow result

with the value expected in Precambrian basement complex. We observed that our value

lies within the margins of the expected value of 37.6 ± 50.2 mW/m2 (Verheijen and

Ajakaiye 1979) and conclude that our calculations seem satisfactory. We also consider

the relationship between heat flow density and radioactive heat production rate to further

confirm our CPD results. Our estimated equivalent depth extent of heat flow density and

radioactive heat production also falls within the margins of the CPD values for the region,

despite that they were computed independent of each other. We conclude that the

equivalent depth extent in this respect could represent the depth of change in mineralogy

in the crust. Generally, we conclude that the shallow CPD observed is due to magmatic

intrusion at depth. The seismic activities recorded close to this region, a major fault pres-

ence (Ifewara fault), multiple fractures in the rock units and low CPDs could be results of

movement of, or within, thin magmatic intrusions. We therefore recommend detailed

temperature measurement at various depths through a series of boreholes to be located at

adequate intervals within the crystalline basement complex of Nigeria. This would provide

the much needed data for further studies of the origin, emplacement, geophysical and

geological characteristics of the basement complex. The results obtained in this work have

provided important geophysical/geological inputs which are useful to further geothermal

energy exploration in the region.
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