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Abstract

Background: The possible signature of deep fluids originating from processes
occurring during infiltration or circulation in a remote valley in the Black Forest
(Germany), a typical infiltration area in the crystalline basement which represents a
possible recharge zone of one of the major heat flux density anomalies in central
Europe, has been hydrochemically characterised. Chemical and isotopic compositions
of two warm springs and several cold springs in Bürchau as well as water from the
Badenweiler Spa were sampled three times during June and October 2013.

Methods: A number of 70 water samples were taken at natural outlet conditions and
analysed for major and trace elements, water H/O-isotope ratios and sulphur isotope
ratios of dissolved sulfate. A chlorofluorocarbon (CFC) analysis was conducted to
determine the underground residence time of the thermal water. To assess water-rock
interactions seven rock samples representing the occurring lithological units of the
study area were prepared to thin sections for polarization microscopic analysis.

Results: The main spring in Bürchau discharging water with a temperature up to
T = 18.1°C at flow rates of approximately 0.2 L s−1 is Na-Ca-HCO3-dominated and generally
low mineralised (total dissolved solids (TDS) of about 150 mg L−1). Even lower mineralisation
and temperature of a nearby spring indicates further dilution with shallow groundwater.
With respect to cold springs in the vicinity, the thermal water in Bürchau is slightly enriched
in Cl, B, Li, Rb and Cs. In nearby granites, sericitisation of plagioclase and oxidation of pyrite
to goethite have been identified. The stable isotope composition of H and O suggests
meteoric origin of the water. Chlorofluorocarbon (CFC) analyses indicate that 30% to 40%
of the thermal water in Bürchau is younger than 60 to 70 years. Reservoir temperatures
have been estimated to 40°C to 80°C using sulphate and quartz geothermometers.

Conclusions: Thus, the circulation time of the other 60% to 70% of the thermal water is
longer than 70 years. Estimated reservoir temperatures in a range of 40°C to 80°C
correspond to an infiltration depth of about 1,600 to 1,800 m.
2015 Rolker et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
rovided the original work is properly credited.
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Background
Very low-temperature and natural subsurface flow systems have been observed world-

wide, especially in mountain ranges such as the Alps, the Himalayas and the Black For-

est (e.g. Sonney 2010, Bucher et al. 2009). These systems are often characterised by

water of meteoric origin that percolates in the uppermost crust along permeable struc-

tures (Baietto et al. 2005). It can reach elevated temperatures and considerable total

dissolved solids (TDS) through water-rock interaction (e.g. Evans et al. 2005). Subsur-

face circulation in such settings is mainly driven by pressure differences due to the top-

ography (Tóth 1978). Ascent paths are generally controlled by faults and fracture

zones, i.e. by zones of enhanced permeability (Guglielmetti et al. 2013, Giersch 2006).

Central Europe hosts a number of important heat flux anomalies that are linked to

upwelling fluids of enhanced temperature in a specific geological and tectonic setting.

Major anomalies are located in the central Upper Rhine Graben to the east of the Black

Forest (e.g. Baillieux et al. 2013) and to the south of the Black Forest at the High Rhine

(Medici and Rybach 1995; Figure 1). They are thoroughly investigated and reach a heat

flux density up to 150 mW m−2. Differences in 3H- and 14C-contents for the Ca-Na-

HCO3-type water in the springs at Bürchau and Rothaus compared to the Na-SO4-

HCO3-Cl-type in Northern Switzerland led to the interpretation that fluids in the

crystalline basement of Northern Switzerland were recharged in the Black Forest

(Pearson et al. 1991).

The basement rock in this area can be characterised by a heat flow pattern between

the elevated temperatures at the Rhine Graben and the anomaly in Northern

Switzerland (Kohl et al. 2003). Since there are no data from deep wells near Bürchau,

the temperature field is only accessible through indirect observations such as hydro-

chemistry. The warm spring at Bürchau was first documented with a flow rate of 0.2 L s−1

and a TDS of 100 mg L−1 in the early 1920s (Badisches Geologisches Landesamt 1930).

Extensive hydrochemical and isotopic investigations were carried out at this source by

Schmassmann et al. (1984) to examine its regional relation to water from deep wells in

Northern Switzerland. They concluded that the Bürchau water is probably a mixture of

older crystalline water with recent water. Isotopic investigation indicated a rather local

catchment area (Pearson et al. 1991). The residence time of the water is estimated to be over

25 to 30 years. However, the likely mixing leads to high uncertainty of the flow model.
Figure 1 Heat flux map along the High Rhine River with the location of boreholes later used for
comparison. Modified after Medici and Rybach 1995 and Schärli and Rybach 2002, Swiss coordinates CH93.
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In this respect, this study aims on characterising hydrothermal processes occurring in

the infiltration zone of this large scale heat flux density anomaly.

Study area

The study area includes a large part of the Kleines Wiesental, a high-situated valley in

the Southern Black Forest, SW-Germany. The Black Forest represents an erosional

window into the Variscan crystalline basement that consists in its central part predom-

inantly of ortho- and paragneisses (Geyer and Gwinner 2011). The boundary between

the Central Black Forest Gneiss Complex to the north and the Southern Black Forest

Granite and Gneiss Complex to the south is located about 2 km north of Bürchau

(Figure 2). Both complexes are considered to be part of the Moldanubian zone of the

Central-European Variscan orogen. They are separated by the Badenweiler-Lenzkirch

Zone, presumably a suture zone, consisting of Ordovician to lower Carboniferous sedi-

ments and volcanic rocks as well as successions of metamorphosed volcano sediments

(Sawatzki and Hann 2003). South of the Badenweiler-Lenzkirch Zone, gneisses are

characterised by extensive intrusions of granitoids (Kalt et al. 2000, Figure 2).

The warm springs are located at Bürchau (628 m above sea level (a.s.l.)), about 25 km

south of Freiburg i.Br. (Figure 2). The topography of this region is dominated by Mt. Belchen

(1,414 m) north of Bürchau, Mt. Honeck (1,022 m) in the east and Mt. Köhlgarten (1,224 m)

in the northwest. There are two discharges of warm water in Bürchau. The main discharge

B1 is located within the river and reveals a temperature of 15°C to 18°C. Its flow rate has

dropped after construction work to about 0.16 L s−1. A second discharge B2 with a
Figure 2 Area of investigation in the southern Black Forest. (a) Geological map of the southern Black
Forest (modified after Sawatzki and Hann 2003) with location of the study area and Badenweiler Spa (B5).
(b) Sample locations of two warm springs and one cold spring in Bürchau (B1/2 and B3, respectively) as
well as a river in Bürchau (B4) (Source: Google earth).
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temperature around 9.5°C occurs at the rim of the riverbed 50 m northeast of B1 (Figure 2b).

The thermal image of the slope at B2 (Figure 3) reveals a surface temperature of up to 7°C

in contrast to the ambient temperature of −6°C in October 2011, when the picture was

taken (Figure 3). In Badenweiler, west of Bürchau, another thermal spring (B5) was investi-

gated for comparison. Its water is of meteoric origin (Berg and Genser 1961) and reveals a

lower mineralisation in contrast to other thermal waters in similar tectonic settings close to

the eastern boundary fault of the Upper Rhine Graben in Baden-Baden or Ohlsbach (Stober

and Bucher 2000). The host rock of the springs is the Southern Black Forest Granite and

Gneiss Complex occurring at the lithological contact between the biotite gneisses to the east

and the un-deformed granites to the west (Figure 2a).

Regional fault systems reveal mainly Hercynian and Rhenian strike directions with

the ESE-WNW striking Vorwald fault and the N-S striking normal fault system of

Wehr, respectively (Figure 2). All geological units are cut by granite porphyry dykes

with late Visean intrusion ages (Schaltegger 2000). The orientation of a number of

these dikes is in agreement with the ESE-WNW striking fault zones. The Vorwald fault,

approximately 20-km long, is assumed to be a pathway for hydrothermal circulation

from the area of investigation to the area of high heat flux density in Northern

Switzerland (Medici and Rybach 1995, Figure 1). The origin of the fault is assumed to

be pre-Variscian (Wirth 1984). The likely hydrothermal circulation along the fault zone

may be indicated by the present stress field. Recent displacement is observed at the

Kandern fault, a prolongation of the Vorwald fault, e.g. by the Schopfheim earthquake

on 5 May 2009 with a magnitude of ML = 4.5 with an epicentre located about 5 km to

the SW of Bürchau (Bundesanstalt für Geowissenschaften und Rohstoffe BGR 2009). A

regional strike-slip stress regime that was determined for the study area using inversion

of focal mechanism (Kastrup et al. 2004) is consistent with the recent Schopfheim

earthquake. The maximum horizontal stress (SHmax) is oriented sub-horizontally in ap-

proximately NW-SE direction, while the minimum horizontal stress (Shmin) is orien-

tated approximately NE-SW (Müller et al. 2003). Towards Northern Switzerland in the

area of high heat flux density, the orientation of the stress field in the granitic basement

is consistent with the one observed around Bürchau; the type of stress, however,

changes into strike-slip/normal faulting regime (Kastrup et al. 2004).

Methods
For chemical characterisation of the circulation system in Bürchau, water samples were

taken at natural outlet conditions. In total, seven rock samples were cut and prepared
Figure 3 Warm spring B2 at the riverside in Bürchau (view from the W) and related thermography
(11 September 2011). Permission: H. Senn.
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to 30-μm-thin sections for polarisation microscopic analysis. The fresh rock samples

representing the occurring lithological units of the Southern Black Forest Granite and

Gneiss Complex and the Badenweiler-Lenzkirch zone were taken in a radius of <5 km

from the spring B1. One additional sample was taken from the slightly altered rock

sample of the Mambach granite in the fracture at B1 (Figure 4) where discharge occurs.

A number of 70 water samples were taken during three field campaigns in 2013 at

two warm springs (B1/2), a cold spring (B3) and the river water (B4) at Bürchau, as well

as at the thermal spring near Badenweiler (B5). A seasonal monitoring of the springs

was not conducted, since steady chemical composition of the fluid is indicated over de-

cades by comparison with earlier measurements (Carlé 1975; Schmassmann et al.

1984). In order to investigate a possible effect of near surface inflow, the concentrations

of major and trace elements, water H/O-isotope ratios and sulphur isotope ratios of

dissolved sulphate, were determined for samples of the first two campaigns. In this re-

spect campaign I was conducted after a period of 3 days of heavy rainfall with a total

precipitation of >100 L m−2. Campaign II was carried out after a period of 10 days

without precipitation. Although temperature appears different between the JUN13 and

JUL13 sampling, no significant difference in the chemical composition of the spring

waters between campaigns I and II for B1 has been observed (Table 1). Campaign III

for chlorofluorocarbon (CFC) analyses was conducted at B1 after a period of low pre-

cipitation (<50 L m−2 over 10 days). This observation is underlined by comparison with

earlier measurements (Schmassmann et al. 1984; Carlé 1975) showing that the water

chemistry is distributed homogenous (especially for trace elements) over decades.
Figure 4 Warm water, tapped spring B1 in Bürchau. The strike of the fracture along which water is
ascending is highlighted by the dashed line.



Table 1 Chemical composition and stable isotope contents of waters in the study area (Bürchau, B1-4, adenweiler, B5): results for the two sampling
campaigns in June and July 2013 and earlier studies

Spring B1 B2 B3 B4 B5 B1 Schmassmann et al. (1984) B1 Carlé (1975)

JUN13 JUL13 JUN13 JUL13 JUN13 JUL13 JUN13 JUL13 JU 13 JUL13 1981 to 1983 1958

Temperature [°C] 15.1 18.1 9.3 9.7 - - 8.3 - 18 20.4 16.8 -

Conductivity [μS cm−1] 152 149 49 61 49 46 46 55 42 420 - -

O2 concentration [%] 62 66 92,8 77 105 97 98 90 72 71 - -

Redox potential [mV] 221 245 294 270 - 290 242 237 22 252 - -

pH 7.45 7.5 6.7 6.8 7.2 6.3 7.4 7.2 7.6 7.7 8.06 6.8

δ18O [‰] −9.77 −10.25 −9.82 −10.1 - −10.6 - −10.12 −9 8 −10.1 −9.86 -

δ2H [‰] −68.1 −68.7 −68.9 −68.4 - −70.9 - −68.0 −6 4 −69.2 −69.5 -

δ34S [‰] (from BaSO4 precipitation) 5.11 5.00 - 4.12 - - - - 12 12.95 - -

δ18O [‰] (from BaSO4 precipitation) 3.72 3.61 - 3.17 - - - - 6.0 5.88 - -

Amount [mg L−1]

Na 15.0 15.4 2.88 2.88 - 2.14 - 3.66 31 33.3 14.9 11.7

K 1.21 1.21 0.55 0.54 - 0.33 - 0.6 3.1 3.27 1.21 -

Ca 14.6 15.3 4.55 6.88 - 5.37 - 5.72 46 54.8 33.3 12.6

Mg 1.21 1.3 0.85 1.33 - 1.11 - 0.84 6.5 7.16 2.80 3.7

Li 0.0405 0.0419 0.0009 0.0011 - 0.0006 - 0.0007 0.1 0.138 0.048 -

Sr 0.155 0.181 0.028 0.042 - 0.042 - 0.03 0.4 0.487 0.298 -

Cl 1.85 1.79 3.3 3.59 - 1.48 - 3.73 8.5 8.93 1.91 4.5

HCO3 85.4 79.3 18.3 24.4 - 42.7 - 42.7 15 165 71.0 67.1

SO4 12.0 12.1 2.89 3.32 - 2.36 - 2.99 67 67.8 23.8 12.3

F 1.85 1.9 0.13 0.23 - 0.2 - 0.12 0.8 0.8 1.86 -

SiO2 - 22.3 - 4.1 - 4.4 - 5.3 - 19.6 23.8 7.5
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Table 1 Chemical composition and stable isotope contents of waters in the study area (Bürchau, B1-4, Badenweiler, B5): results for the two sampling
campaigns in June and July 2013 and earlier studies (Continued)

Amount [μg L−1]

B 14.2 13.6 2.73 2.68 - 2.61 - 2.74 162.9 164 - -

Fe 1.32 2.32 2.51 1.59 - 1.78 - 10.7 2.03 2.39 - -

Cu 0.17 0.27 0.15 0.14 - 0.17 - 0.37 3.09 3.58 - -

Zn 1.03 1.9 1.59 2.37 - 1.88 - 1.85 98.6 96.4 - -

As 62.3 64.2 4.97 5.2 - 1.91 - 4.8 101.5 104 - -

Rb 6.67 8.12 2.29 2.67 - 1.74 - 2.29 15.6 17.1 - -

Mo 1.66 1.65 0.05 0.1 - 0.05 - 0.08 1.34 1.33 - -

Cs 2.65 3.92 0.7 0.82 - 0.54 - 0.38 14.29 15.1 - -

U 6.51 7.1 0.09 0.14 - 0.03 - 0.12 5.59 5.79 - -

Ba 156 187 254 333 - 199 - 75.6 56.7 59.5 - -

TDS [mg L−1] 135 153 35.6 49.8 - 61.7 - 67.8 328 365 - -
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During the field campaigns, physic-chemical parameters of the springs, including

temperature, pH, oxygen concentration, redox potential and electrical conductivity,

were measured in situ using a WTW Multiline P4 (WTW Wissenschaftlich-Technische

Werkstätten GmbH, 82362 Weilheim, Germany). Additionally, the alkalinity was

determined by titration with an alkalinity field set (Aquamerck, Merck KGaA, 64293

Darmstadt, Germany) immediately after sampling.

Water samples were collected in new 60-, 100- and 1,000-mL polyethene (PE) bottles.

Before collecting water samples, all materials were well flushed with the water that was

to be sampled later. Samples for the anion and cation analytics were filtered with a

0.45-μm membrane filter. To prevent the formation of metal hydroxide complexes,

samples for the major and trace elements were acidified with sub-boiled nitric acid

(HNO3) to pH < 2 immediately after sampling. Samples for anion analytics (SO4, F, Cl)

were darkened with aluminium foil and frozen until the day of analysis. Water samples

for CFC measurements were collected from the outflow B1 in 1-L faceted glass bottles

locked in water-filled gas-tight brass tubes. The empty glass bottle is plunged com-

pletely in a metallic tin. The water is filled in the glass bottle using a rubber tube posi-

tioned at its bottom. The sampling is carried out in a 10-L plastic bucket. After

complete overflow of the bottle and the tin and continuous flushing for at least several

minutes to remove atmospheric air from the sample bottle, the tube was pulled out

and the bottle was closed under water in the tin. The tin was closed with a sealing

rubber ring to avoid exchange with air.

Different analytical methods like the atomic absorption spectroscopy (ASS), the

atomic emission spectroscopy (AES), the ion chromatography (IC) and the inductive-

coupled-plasma mass spectroscopy (ICP-MS) had been successfully applied for analys-

ing geothermal waters (Arnórsson et al. 2006, Armannsson and Olafsson 2007). The

analyses of the acidified samples for major (Na, K, Ca, Mg) and trace elements (Li, B,

Fe, Cu, Zn, As, Rb, Sr, Mo, Cs, U, Ba) with ICP-MS at the Institute of Mineralogy and

Geochemistry IMG at KIT showed a high reproducibility. Certified reference material

HPS VF 5 from High Purity Standards was used. The detection limit for major ele-

ments is <0.01 mg L−1 and <0.013 μL−1 for trace elements except B and Fe with a de-

tection limit of 0.56 μL−1 and 1.41 μL−1, respectively.

Samples for anion analytics (SO4, F, Cl) were analysed with ion chromatography at

the IMG laboratory at the KIT. The coefficient of determination at the calibration for

the standard solution was 99.9972% in average.

The dissolved silica content was measured by ultraviolet-visible (UV/VIS) photometer

(Lambda 2, PerkinElmer, Waltham, MA, USA) and the molybdenum blue method. The

basis of this method is the formation of a silica-molybdenum blue complex in the pres-

ence of ascorbic acid. The intensity of the blue coloration after adding specific solutions

depends on the amount of dissolved silica. The absorption of light determined with a

UV/VIS photometer can be used to quantify the amount of dissolved silica.

Water samples for H/O-isotope measurements were collected in 100-mL PE bottles.

The bottles were closed under water to prevent contamination by air. The hydrogen

and oxygen isotope ratios were determined with the Liquid Water Isotope Analyser

(LWIA, Los Gatos Research Inc., Mountain View, CA, USA). As a calibration standard,

LGR5A, LGR6A and LGR7A were used. The mean standard deviation for δ2H is

0.35‰ and for δ18O 0.09‰.
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Sulphur and oxygen isotope composition of dissolved sulphate was measured with an

isotope-ratio mass spectrometer (IRMS) at the IMG laboratory of the KIT. Therefore,

dissolved sulphate was precipitated from water samples by adding barium chloride. The

precipitated barium sulphate was dried and analysed with an IRMS. The mean standard

deviations are 0.03‰ and 0.14‰ for δ34S and for δ18O, respectively.

The concentration of different CFCs in groundwater, emitted during different periods

since the 1930s into the air, provides a useful tracer to indicate underground residence

times due to high chemical stability under aerobic conditions (Rowland and Molina

1975). Generally, low CFC concentrations in groundwater suggest a relatively long resi-

dence time of >60 to 70 years indicating a deep circulation system in the study area.

During groundwater recharge, the CFCs are incorporated in the groundwater based on

the specific gas solubility. Due to CFC input curves, the proportion of young water and

ideally also the mean residence time can be distinguished (Plummer and Busenberg

1999).

CFC samples were analysed at the Spurenstofflabor Dr. Harald Oster (Wachenheim,

Germany). The water samples were analysed for trichlorofluoromethane (CFC-11),

CFC-12 and trichlorotrifluoroethane (CFC-113) using purge and trap gas chromatog-

raphy with an electron capture detector. The measurements generally are performed by

direct injection of about 20 mL of water to the stripping chamber. A transfer gas is

used to extract the CFCs from the water sample. The reconstruction of the age of the

water is based on the historic data of atmospheric CFC concentrations. The concentra-

tions in the sample are determined by atmospheric CFC concentrations and Henry's

law describing the proportionality of gas dissolution to its partial pressure. An altitude

of 1,100 m a.s.l. with an annual mean temperature of 6°C was assumed according to

the weather history at the study area. Furthermore, the salinity of the water samples

was taken into account for the descriptions of distinct input functions for the area of

recharge. These distinct input functions are integrated in a lumped parameter program

using the exponential model after Malloszewski and Zuber (1992).

Resampling the Bürchau springs allows for comparing the results with former investi-

gations and for enlarging the existing dataset. We collected water samples to measure

CFC to tackle the above mentioned uncertainty due to mixing processes in a quantita-

tive way.

With respect to the possible temperature distribution at depth, we compared

different silica-geothermometers with SO4
2−-H2O geothermometers, obtained from

S-isotopy.

Data from Schmassmann et al. (1984) and Carlé (1975) were included in the inter-

pretation to determine possible changes in the hydrochemical characteristics.
Results and discussion
The analysis of the tectonic structures reveals that three to four tectonic features of

different type or orientation join directly at Bürchau or a few kilometres in the north.

In the direct vicinity of the spring, a number of different arms of dikes of a late-

Variscian, porphyric granite join in a kind of triple junction. The major arm is ori-

ented N-S following the valley of Kleines Wiesental and is transforming towards the

north of Bürchau in a fault zone cutting through the Badenweiler-Lenzkirch zone.
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The two minor arms of the intrusion are orientated NE-SW and NW-SE. The orien-

tation of the outflow fracture of B1 at Bürchau coincides with the latter direction

(Figure 4).
Hydro-geochemical characteristics

In the following, we will discuss the results listed in Table 1. The discussion is focused

on the Bürchau (B1) and Badenweiler (B5) waters since they reveal the highest total

mineralisation in the area. We observe temperature differences of 1.7°C to 3.0°C be-

tween the JUN13 and JUL13 campaigns for B5 and B1, respectively. The specific elec-

tric conductivity is rather stable with 152 and 429 μS cm−1 in JUN13 and 149 and 420

μS cm−1 in JUL13 for B1 and B5, respectively. Redox potential is observed to increase

slightly from JUN13 to JUL13 from 221 (B1) and 227 mV (B5) to 245 (B1) and 252 mV

(B5), while the pH increases from pH = 7.45 (B1) and 7.6 (B5) to 7.5 (B1) and 7.7 (B5).

The chemical composition of the B1 water of (Figure 5) is dominated by Ca, Na and

HCO3. Its mineralisation with TDS = 153 mg L−1 differs from the other samples B2 to

B4 with TDS between 50 and 68 mg L−1, respectively, and B5 with TDS of 365 mg L−1.

It should be mentioned that the thermal water of B1 is enriched in Li, Cl, F, B, Rb and

Cs with respect to B2 and B4 (see Table 1). The enrichment of trace elements like

fluorine is often documented for water from fractured granite in the Black Forest

(Göb et al. 2013, Hofmann 1989). Changes in the concentration of some elements of

the different sources and in particular temperature changes in B1 and B5 may indicate

a possible increased influx of shallow subsurface water after rainfall in the JUN13 cam-

paign. Most of the variation is however within the uncertainty of the measurements.

Since a link between the Bürchau waters and the High Rhine region in terms of infiltration

and discharge has been postulated by Schmassmann et al. (1984) and reactivated Variscian

fault zones are suspected to provide sufficient permeability for fluid transport (Schill et al.
Figure 5 Concentration of major solutes in the thermal water for the two warm springs in Bürchau
(B1 and B2). Concentration of major solutes in the thermal water expressed in millimoles per litre for the
two warm springs in Bürchau (B1 and B2) compared to two representative high TDS deep fluids (dashed
red lines), two intermediate mature waters from the transition group (dashed blue lines) and one similar
low concentrated water from the Southern Black Forest (dashed black line). (Data from: Schmassmann et al.
(1984) & Wittwer 1986, Carlé 1975, Stober 1994 and Stober and Vicedom 2005).
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2011), we have compiled the major solutes of the waters in Figure 5. It results that the thermal

water in the study area is Na-Ca-HCO3-dominated revealing chemical characteristics that are

similar to representative crystalline basement groundwater from the Black Forest, but of lower

mineralisation and a significant influence of surface water.

The relationship between δ18O and δ2H is shown in Figure 6. Since the isotope ratio

follows the global meteoric water line, there is no isotopic shift due to boiling pro-

cesses. The values show a difference between sampling campaign I to II. The δ18O

values in campaign II are more negative. Most likely, this can be attributed to the heavy

rainfall before sampling of campaign II. This resulted in a backshift to lighter δ18O

values in campaign I due to significant infiltration of surface water in the direct vicinity

of the source. In campaign II, water originates mainly from higher recharge areas. The

decrease of δ18O and δ2H values between the Mt. Belchen and B1 to B3 and B5 can be

attributed to altitude effects since there is a difference in altitude of several hundred

metres between Bürchau and Mt. Belchen as well as Badenweiler and Mt. Belchen. A

minimum value for the altitude of infiltration of about 870 m a.s.l. with an annual mean

temperature of 6°C has been inferred using the δ18O to altitude ratio of Pearson et al.

(1991) for the NE Jura Mountains and the Black Forest.

Petrography

Petrographic analyses of the thin sections of all granite samples from the study area

(Figure 7) reveal sericitisation of plagioclase. Although the TDS between 35 to

153 mg L−1 at Bürchau indicates only little water-rock interaction, this sericitisation

may among others represent one possible source of alteration of plagioclase in the

presence of CO2 (Equation 1).

Na4CaAl6Si14O40

plagioclaseð Þ þ 3 H2Oþ 2 CO2↔
Al2Si2O5 OHð Þ4
kaoliniteð Þ

þ 4 NaAlSi3O8 þ Ca2þ

albiteð Þ þ 2 HCO3
− ð1Þ

From the isotopic composition of the Bürchau water, it should be mentioned that it

is inconclusive to prove sericitisation. Furthermore, the exact composition of plagio-

clase was not identified in this study.
Figure 6 δ2H/δ18O isotopy of campaign 1 (black), campaign 2 (red) and Mount Belchen (black diamond).



Figure 7 Representative example of the Mambach granite with sericitised plagioclase (sample taken at
the discharge B1). Ksp = alkali feldspar, qtz = quartz.
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Thin sections of the granite sample from B1 show distinct weathering reactions of

opaque minerals to reddish secondary minerals that indicate the oxidation of pyrite to

goethite (Figure 8). The oxidation of pyrite can be described with the following

equation:

2 FeSþ 7 H2Oþ 7:5 O2

pyriteð Þ ↔
Fe OHð Þ3 þ 4 SO4

2− þ 8Hþ

goethiteð Þ ð2Þ
Chlorofluorocarbon analysis

The amount of specific CFCs for B1 obtained from the sampling campaign III are listed

in Table 2. Assuming a contamination of surface water as shown by the stable isotope

results of campaign I and II, the infiltration altitude for the groundwater recharge is es-

timated iteratively using the below presented results to about 500 m above B1 at a

mean temperature of 5°C. For this case, specific harps were constructed using the expo-

nential model of Malloszewski and Zuber (1992) for further interpretation. In Figure 9,
Figure 8 Pyrite oxidation in quartz (qtz) vein surrounded by alkali feldspar (ksp).



Table 2 Amount of CFCs and standard deviation at B1 from the sampling campaign III

Sample name Trace gases

Trichlorofluoromethane
(F11)

Dichlorodifluoromethane
(F12)

1,1.2-Trichlorotrifluoroethane
(F113)

[pmol L−1] [pmol L−1] [pmol L−1]

Spring B1 1.5 ±0.2 0.81 ±0.05 0.13 ±0.05
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the results of the CFC analysis are represented for the specific sampling period and re-

charge area for CFC-113 and CFC-11. Data points at the top on the right of the harp

would indicate a young water amount of 100%. The results indicate a mixed ground

water composition of minimum two components. The younger component appears to

be younger than 60 years and has a proportion of about 30% to 40%. The major

groundwater component of B1 (60% to 70%) is older than 60 years.
Geothermometers

Geothermometers are based on temperature-dependant chemical reactions or isotope

equilibrium fractionation relations from which the equilibrium temperatures can be

calculated. The applicability to low-temperature reservoirs is a matter of debate, since

the majority of geothermometers were developed and calibrated for high-enthalpy

geothermal systems (Fournier 1977, Arnórsson 1983). To obtain higher reliability of

estimated reservoir temperatures, in this study, we tested sulphate geothermometers

that have recently been successfully applied for low-enthalpy systems (T < 150°C) in
Figure 9 CFC-113 vs. CFC-11 diagram for warm spring in Bürchau (B1) for groundwater recharge
area at 1,100 m a.s.l.



Table 3 Calculated reservoir temperatures

Geothermometer Temperature calculation [t in °C] Calculated
reservoir
temperature
for B1 [°C]

Calculated
reservoir
temperature
for B5 [°C]

S = Si-concentration as SiO2 in mg kg−1

α = isotopic relation between SO4 and H2O
(fractionation factor)

Quartz (Fournier 1977) t ¼ 1;309
5:19 − logS−273:15 68 63

Quartz (Arnórsson et al.
1998a)

t ¼ −55:3þ 0:3659S−5:3954� 10−4S2

þ5:5132� 10−7S3 þ 74:36 logS
55 49

Quartz (Verma 2000) t ¼ 1;175
4:88− logS−273:15 60 55

Chalcedony (Fournier
1977)

t ¼ 1;032
4:69–logS−273:15 36 31

Chalcedony (Arnórsson
et al. 1983b)

t ¼ 1;112
4:91− logS−273:15 39 34

SO4
2−-H2O (Halas and Pluta

2000)
103 lnα(SO4-H20) = 2.41·106/t2 – 5.77 77 59

SO4
2−-H2O (Zeebe 2010) 103 lnα(SO4-H20) = 2.68·106/t2 – 7.45 81 65
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addition to silicate geothermometers (Boschetti 2012). A sulphate geothermometer is

derived from the oxygen isotope composition of dissolved sulphate and water.

Calculated reservoir temperatures for B1 and B5 are listed in Table 3. Temperatures

derived from silica geothermometers for B1 are in the range of 55°C to 68°C for the

quartz geothermometer and slightly below 40°C for the chalcedony geothermometer.

Within the range of up to 80°C, the calculated reservoir temperatures derived from
Figure 10 Oxygen isotope fractionation vs. temperature for different S-O-H2O systems (after
Boschetti 2012).
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sulphate geothermometers are higher than those derived from silica geothermometers.

Similar to spring B1, the calculated temperatures for the Badenweiler Spa (B5) are uni-

form and show reasonable results in the range of 49°C to 63°C for silicate geotherm-

ometer and ±60°C for sulphate geothermometer. Since we observe massive

sericitisation of plagioclase in thin sections, enough SiO2 in solution is assumed to form

equilibrium with quartz over time.

All water samples (B1, B2 and B5) fall into the zone of immature water in the ternary

Na-K-Mg1/2 diagram (Giggenbach 1988) indicating little water-rock interaction, i.e. no

equilibrium condition. Reservoir temperatures for B2, B3 and B4 are not listed, since

dilution with surface groundwater leads to inconsistent temperatures. This leads to the

conclusion that calculated reservoir temperatures for the Bürchau side are

questionable.

For evaluating the sulphate-water oxygen isotope geothermometers, the theoretical

(Zeebe 2010) and empirical (Halas and Pluta 2000) isotope fractionation factors within

the range of 0°C to 150°C were considered (Figure 10). Due to a very likely dilution by

near surface water, B2 has been excluded from further analyses. Both samples, B1 and

B5, are shifted from the SO4
2−-H2O equilibrium area. This shift may result from con-

ductive cooling during the ascent of the fluid and/or from isotopic effects due to

sulphide oxidation (Boschetti 2012). Since indication for oxidation of pyrite to goethite

is found in the thin sections (Figure 8), the calculated reservoir temperatures with the

sulphate isotope geothermometers tend to be overestimated. In this case, both conduct-

ive cooling and sulphidic oxidation influence the oxygen isotopic fractionation within

the geothermal water.
Figure 11 Conceptual model of the Bürchau flow system.
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Conclusions
The very low-temperature fluid that rises along open NW-SE discontinuities in the

Mambach granite is of meteoric origin with a low mineralisation of Na-Ca-HCO3 type.

All samples plotted in the δ18O / δ2H diagram occur close to the meteoric water line

indicating only little significant water-rock interactions. Sericitisation of plagioclase and

pyrite oxidation in quartz vein is observed in thin sections. Infiltration of the water has

been estimated iteratively to occur at an altitude of approximately 1,100 m at an annual

mean temperature of 5°C. Figure 11 shows a conceptual flow model of the Bürchau

flow system. Sulphate isotope geothermometer appears to be applicable to the very

low-temperature reservoirs of the Black Forest. Although possibly slightly overesti-

mated, it provides most-consistent temperatures ranging between 77°C and 87°C for B1

and 59°C to 65°C for Badenweiler. CFC analyses show that 30% to 40% of the thermal

water in Bürchau is younger than 60 to 70 years. Thus, the circulation time of the other

60% to 70% of the thermal water is longer than 70 years.

Finally, our results provide a reference for processes occurring already in the infiltra-

tion area of the Black Forest. A thermo-hydraulic model will be established in a forth-

coming paper.
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