Skip to main content

Science – Society – Technology

Table 4 Cost model for capital expenditure

From: Modeling and economic evaluation of deep geothermal heat supply systems using the example of the Wealden near Hannover, Germany

Project phase

Project element

Cost model

Time to replacement

Planning

Feasibility study, €

180,000

 

acquisition and analysis of existing information, €

500,000

Energy concept, €

100,000

Permits, expert opinions, €

150,000

Drilling

Site, construction reconditioning, €

300,000

Lifetime

Rigup, €

250,000

Drilling expenditure, €

\(1.198 \cdot {e}^{0.0004354\cdot {z}_{\mathrm{MD}}}\cdot {V}_{\mathrm{Well}}/{V}_{\mathrm{Ref}.\mathrm{Well}}{\cdot 10}^{6}\)

Logging, €/m

65

Production/circulation test, €

450,000/350,000

Stimulation, €

600,000

Production and injection equipment

Production pump, €

\({P}_{\mathrm{Hydr}}\cdot \left(M\cdot {P}_{\mathrm{Hydr}}^{-0.319}\right)\), where \({P}_{\mathrm{Hydr}}=\mathrm{NPF}\cdot \dot{V}\cdot \Delta p\)

4

Pump Installation, €

\(5000 \left[ {euro /{\text{d}}} \right] \cdot \left( {\frac{{{\text{Setting}}\_{\text{depth}} \left[ {\text{m}} \right]}}{{250 \left[ {{\text{m}}/{\text{d}}} \right]}} + 4} \right) + 10{,}000\left[ euro \right]\)

Completion excl. pump, €

\(L\left[\mathrm{m}\right]\cdot \left\{80+\left(0.0215\cdot {P}_{\mathrm{Hydr}}+77\right)\right\}\)

Injection pump, €

\(0.8\cdot \left[1500\cdot {{P}_{\mathrm{Cap}\_\mathrm{inj}}}^{0.48} \left(1.89+1.35\cdot \mathrm{FM}\cdot {10}^{(-0.3935+0.3957{\cdot \mathrm{log}}_{10}\left(p\right)-0.00226\cdot {\mathrm{log}}_{10}{\left(p\right)}^{2}}\right)\right]\),

where \({P}_{\mathrm{Cap}\_\mathrm{inj}}=\mathrm{NPF}\cdot \dot{V}\cdot \frac{\Delta p}{{\eta }_{\mathrm{Motor}}{\cdot \eta }_{\mathrm{Isentropic}}}\) and p = operating pressure in barue

10

Thermal water system incl. heat exchanger

Surface piping incl. fittings, €/m

\({\text{Capex}}_{{{\text{Pipe}}\_p_{15} }} \left[ {euro /{\text{m}}} \right] = M1 \cdot \dot{V}\left[ {{\text{m}}^{3} /{\text{s}}} \right] + M2\)

\({\text{Capex}}_{{{\text{Pipe}}}} \left[ {euro /{\text{m}}} \right] = {\text{Capex}}_{{{\text{Pipe}}\_p_{15} }} \cdot\left[ {1 + \alpha \cdot\left( {p - p_{15} } \right)} \right]\)

Lifetime

Pressure vessel, €

\({\mathrm{Capex}}_{{p}_{15} }={10}^{\left(3.4974+0.4485{\cdot \mathrm{log}}_{10}\left(V\right)+0.1074\cdot {\mathrm{log}}_{10}{\left(V\right)}^{2}\right)}\)

\(\mathrm{Capex}={\mathrm{Capex}}_{15}\cdot \left[2.25+1.82\cdot \mathrm{FM}\cdot \mathrm{FP}\right]\)

FP = \(\left(\frac{p\cdot d}{2\cdot \left(850-0.6\cdot p\right)}+0.00315\right)/0.0063\) with p = operating pressure in barue

Lifetime

Shell-and-tube heat exchanger, €

\(1300\cdot {A}^{0.66}\cdot \left(1.63+1.66\cdot FM\cdot {10}^{(0.03881-0.11272{\cdot log}_{10}\left(p\right)+0.08183\cdot {log}_{10}{\left(p\right)}^{2}}\right)\)

with \(A\left[{\mathrm{m}}^{2}\right]=\frac{{P}_{\mathrm{th}}}{{\dot{q}}_{W}\cdot \Delta {T}_{\mathrm{log}}}\cdot \mathrm{NPF}\) and \(\Delta {T}_{\mathrm{log}}\left[K\right]=\frac{\Delta {T}_{\mathrm{max}}-\Delta {T}_{\mathrm{min}}}{\mathrm{ln}\frac{{\Delta T}_{\mathrm{max}}}{{\Delta T}_{\mathrm{min}}}}\)

10

Peak load and redundancy boiler, €

\(\mathrm{FM}\cdot 1150\cdot {\left({\mathrm{NPF}\cdot P}_{\mathrm{gt}}/{\mathrm{Share}}_{\mathrm{gt}}\right)}^{0.56}\)

20

Other capital expenditure

Project management

8% of Capex for drilling/surface facilities

 

Insurance

3.5/0.5% of Capex for drilling/surface facilities

 

Seismic monitoring, €

150,000

 

Public relations, €

400,000

 
  1. M, FM = Material factor; α, FP = Pressure factor; NPF = Name plate factor, for values see text